Publications by authors named "Keiji Kainuma"

BEIIb plays a specific role in determining the structure of amylopectin in rice endosperm, whereas BEIIa plays the similar role in the culm where BEIIb is absent. Cereals have three types of starch branching enzymes (BEs), BEI, BEIIa, and BEIIb. It is widely known that BEIIb is specifically expressed in the endosperm and plays a distinct role in the structure of amylopectin because in its absence the amylopectin type changes to the amylose-extender-type (ae-type) or B-type from the wild-type or A-type and this causes the starch crystalline allomorph to the B-type from the wild-type A-type.

View Article and Find Full Text PDF

Two opposing models for the amylopectin structure are historically and comprehensively reviewed, which leads us to a better understanding of the specific fine structure of amylopectin. Amylopectin is a highly branched glucan which accounts for approximately 65-85 of starch in most plant tissues. However, its fine structure is still not fully understood due to the limitations of current methodologies.

View Article and Find Full Text PDF

Professor Dexter French (1918-1981) was an American chemist and biochemist at Iowa State College (University in 1959). He devoted his career to advance knowledge of polysaccharides and oligosaccharides, in particular starch, cyclodextrins, and enzymes. Cyclodextrins are oligosaccharides obtained from starch and are typically cage molecules with a hydrophobic cavity that can encapsulate other compounds nowadays the basis for many industrial applications.

View Article and Find Full Text PDF

It is known that one of starch branching enzyme (BE) isoforms, BEIIb, plays a specific role not only in the synthesis of distinct amylopectin cluster structure, but also in the formation of the internal structure of starch granules in rice endosperm because in its absence the starch crystalline polymorph changes to the B-type from the typical A-type found in the wild-type (WT) cereal endosperm starch granules. In the present study, to examine the contribution of BEIIb to the amylopectin cluster structure, the chain-length distributions of amylopectin and its phosphorylase-limit dextrins (Φ-LD) from endosperm and culm of a null mutant called () mutant line, EM10, were compared with those of its WT cultivar, Kinmaze, of rice. The results strongly suggest that BEIIb specifically formed new short chains whose branch points were localized in the basal part of the crystalline lamellae and presumably in the intermediate between the crystalline and amorphous lamellae of amylopectin clusters in the WT endosperm, whereas in its absence branch points which were mainly formed by BEI were only located in the amorphous lamellae of amylopectin.

View Article and Find Full Text PDF