Publications by authors named "Keiichiro Kashimura"

Acetylene black, activated carbon, and Ketjenblack were subjected to microwave heating up to 1000 °C under N atmosphere to rapidly convert them into graphene-like materials. Few carbon materials exhibit a favorable increase in the intensity of the G' band with increasing temperature. Upon electric field heating of acetylene black to 1000 °C, the observed relative intensity ratios of D and G bands (or G' and G band) were equivalent to those of reduced graphene oxide heated under identical conditions.

View Article and Find Full Text PDF

The ongoing development of high-temperature processes with the use of microwaves requires new microwave absorbers that are useful at these temperatures. In this study, we propose AlSiC powders as important and efficient microwave absorbers. We investigated both the behavioural microwave heating and electrical permittivity characteristics of AlSiC powders with various particle sizes at 2.

View Article and Find Full Text PDF

Model erythro, phenolic, and nonphenolic lignin β-O-4 dimer compounds are treated with copper oxide and H O at the electronic field maximum position of a single-mode 2.45 GHz microwave system equipped with a cavity resonator. The products obtained through microwave heating and oil-bath heating with the same reaction vessel and temperature profile are quantitatively compared.

View Article and Find Full Text PDF

Microwave (MW) heating has received attention as a new heating source for various industrial processes. Some materials are expected to be a more effective absorber of MW, and graphite is observed as a possible candidate for high-temperature application. We investigated the dependence of the aspect ratio of graphite fibers on both their heating behavior and permittivity under a 2.

View Article and Find Full Text PDF

We investigated the effects of microwave irradiation under normothermic conditions on cultured cells. For this study, we developed an irradiation system constituted with semiconductor microwave oscillator (2.45 GHz) and thermos-regulatory applicator, which could irradiate microwaves at varied output powers to maintain the temperature of cultured cells at 37 °C.

View Article and Find Full Text PDF

This study investigated the dielectric properties of sodium alginates and carrageenans in water at frequencies between 100 MHz and 20 GHz in regard to water-hydrocolloid interactions via acidic functional groups. Both sodium alginates and carrageenans showed conduction loss at lower frequencies and dielectric loss at higher frequencies. Reduction and desulfation of sodium alginates and carrageenans, which decreased the numbers of acidic functional groups, decreased their conduction loss.

View Article and Find Full Text PDF

Asbestos-containing debris generated by the tsunami after the Great East Japan Earthquake of March 11, 2011, was processed by microwave heating. The analysis of the treated samples employing thermo gravimetry, differential thermal analysis, X-ray diffractometry, scanning electron microscopy, and phase-contrast microscopy revealed the rapid detoxification of the waste by conversion of the asbestos fibers to a nonfibrous glassy material. The detoxification by the microwave method occurred at a significantly lower processing temperature than the thermal methods actually established for the treatment of asbestos-containing waste.

View Article and Find Full Text PDF

Dielectric properties of aqueous solutions of sulfated hydrocolloids (ulvan and rhamnan sulfate) extracted from green macroalgal biomass were studied in a frequency range of 100 MHz-10 GHz. Counterion exchange of native hydrocolloids (mixture of Na(+), Mg(2+) and Ca(2+)) to H(+)-form showed significant increase in loss factor due to ionic conduction. On the other hand, desulfations decreased their loss factors.

View Article and Find Full Text PDF