Publications by authors named "Keiichi Torimitsu"

Hydrogel-based, molecular permeable electronic devices are considered to be promising for electrical stimulation and recording of living tissues, either in vivo or in vitro. This study reports the fabrication of the first hydrogel-based devices that remain highly electrically conductive under substantial stretch and bending. Using a simple technique involving a combination of chemical polymerization and electropolymerization of poly (3,4-ethylenedioxythiophene) (PEDOT), a tight bonding of a conductive composite of PEDOT and polyurethane (PU) to an elastic double-network hydrogel is achieved to make fully organic PEDOT/PU-hydrogel hybrids.

View Article and Find Full Text PDF

We report on the fabrication of electrically conducting, ultra-sharp, high-aspect ratio probes for atomic force microscopy by electron-beam-induced deposition of platinum. Probes of 4.0 ±1.

View Article and Find Full Text PDF

Background: Transplantation is one potential clinical application of neural stem cells (NSCs). However, it is very difficult to monitor/control NSCs after transplantation and so provide effective treatment. Electrical measurement using a poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) modified microelectrode array (MEA) is a biocompatible, non-invasive, non-destructive approach to understanding cell conditions.

View Article and Find Full Text PDF

AMPA receptors (AMPARs) are glutamate-gated ion channels ubiquitous in the vertebrate central nervous system, where they mediate fast excitatory neurotransmission and act as molecular determinants of memory formation and learning. Together with detailed analyses of individual AMPAR domains, structural studies of full-length AMPARs by electron microscopy and x-ray crystallography have provided important insights into channel assembly and function. However, the correlation between the structure and functional states of the channel remains ambiguous particularly because these functional states can be assessed only with the receptor bound within an intact lipid bilayer.

View Article and Find Full Text PDF

The role of magnesium on nerve tissue was discussed. Two main topics of "magnesium and neural activity" and "magnesium-therapy and brain neurons" were described together with introducing our research on rat cultured neurons of cortex and hippocampus.

View Article and Find Full Text PDF

Electrode materials for recording biomedical signals, such as electrocardiography (ECG), electroencephalography (EEG) and evoked potentials data, are expected to be soft, hydrophilic and electroconductive to minimize the stress imposed on living tissue, especially during long-term monitoring. We have developed and characterized string-shaped electrodes made from conductive polymer with silk fiber bundles (thread), which offer a new biocompatible stress free interface with living tissue in both wet and dry conditions.An electroconductive polyelectrolyte, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was electrochemically combined with silk thread made from natural Bombyx mori.

View Article and Find Full Text PDF

For the functional analysis of ion channel activity, an artificial lipid bilayer suspended over microwells was formed that ruptured giant unilamellar vesicles on a Si substrate. Ca(2+) ion indicators (fluo-4) were confined in the microwells by sealing the microwells with a lipid bilayer. An overhang formed at the microwells prevented the lipid membrane from falling into them and allowed the stable confinement of the fluorescent probes.

View Article and Find Full Text PDF

Ink formulations and protocols that enable the deposition and patterning of a conducting polymer (PEDOT:PSS) in the nanodomain have been developed. Significantly, we demonstrated the ability to pattern onto soft substrates such as silicone gum and polyethylene terephthalate (PET), which are materials of interest for low cost, flexible electronics. The deposition process and dimensions of the polymer patterns are found to be critically dependent on a number of parameters, including the pen design, ink properties, time after inking the pen, dwell time of the pen on the surface, and the nature of material substrate.

View Article and Find Full Text PDF

We have demonstrated for the first time that the self-spreading of supported lipid bilayers can be controlled by the temporal switching of an electric field applied between nanogap electrodes. To account for this phenomenon, we propose an electrostatic trapping model in which an electric double layer plays an important role. The validity of this mechanism was verified by the dependence of self-spreading on the nanogap width and the ionic concentration of the electrolyte.

View Article and Find Full Text PDF

We fabricated a heterogeneous supported lipid bilayer (SLB) by employing binary lipid mixtures comprising a saturated acyl chain DSPC and an unsaturated acyl chain nickel-chelating lipid. By using the specific adsorption properties of histidine-tagged proteins (His-tagged GFPs) in relation to nickel-chelating lipids, we demonstrated protein pattern formation on the SLB corresponding to the phase separation pattern of the SLB. In addition, by using a lipid mixture consisting of an unsaturated acyl chain DOPC and a nickel-chelating lipid, and His-tagged GFPs, we succeeded in transporting the proteins along a hydrophilic micropattern on a SiO(2) substrate.

View Article and Find Full Text PDF

Background: Ionotropic glutamate receptors (iGluRs) are responsible for extracellular signaling in the central nervous system. However, the relationship between the overall structure of the protein and its function has yet to be resolved. Atomic force microscopy (AFM) is an important technique that allows nano-scale imaging in liquid.

View Article and Find Full Text PDF

Mg2+ plays an important role in biological functions, similar to that of Ca2+. In terms of neural activity, it is well known that Mg2+ blocks the NMDA receptor. However, the relationship between Mg2+ and neural function has not been well understood.

View Article and Find Full Text PDF

The ATP-gated P2X(4) receptor is a cation channel, which is important in various pathophysiological events. The architecture of the P2X(4) receptor in the activated state and how to change its structure in response to ATP binding are not fully understood. Here, we analyze the architecture and ATP-induced structural changes in P2X(4) receptors using fast-scanning atomic force microscopy (AFM).

View Article and Find Full Text PDF

Molecular orientation in thin films of a rigid rod conjugated polymer, a derivative of poly(para-phenylene ethynylene)s with linear side chains and thioacetyl end groups, was investigated by reflection-absorption infrared spectroscopy and X-ray diffraction technique. The results indicated that TA-PPE molecules tended to align with their backbone planes perpendicular to substrates, that is, with an "edge-on" molecular orientation in the films. Such molecular orientation is favorable for the efficient carrier transport in two-dimensional direction in the polymer films (i.

View Article and Find Full Text PDF

Surface-modified gold nanorods (Au NRs) with 1,2-dipalmitoyl- sn-glycero-3-phosphothioethanol (DPPTE) were synthesized, and their self-assembled structures on a silicon substrate were observed using a scanning electron microscope (SEM). The Au NR-DPPTE complex formed characteristic one- and two-dimensional self-assemblies induced by intermolecular interactions of surface-anchored lipids via simple drying process. The interparticle distance between neighboring NRs was uniform at around 5.

View Article and Find Full Text PDF

We report on the determination of fluorescence resonance energy transfer (FRET) efficiency, which is dependent on the donor-to-acceptor (D-A) ratio, by using a new type of microchannel device called a "lipid-flow chip". The chip comprises two supported lipid bilayers (SLBs) that self-spread from either side of 10 microm wide straight lines and carry molecules embedded in them. We first show that the diffusion process that occurs when the two SLBs collide with each other in the channel and form a unified SLB can be expressed by a one-dimensional diffusion equation.

View Article and Find Full Text PDF

Gold nanorods (NRs) mixed with crown ether derivatives exhibited the efficient and selective recognition of Na+ and K+ ions, which were detected by localized surface plasmon absorption in response to dispersed and aggregated gold NRs. Furthermore, in the aggregates preferential end-to-end or side-to-side assembly of NRs was observed which was dependent on the additive concentration.

View Article and Find Full Text PDF

We report on the self-spreading behavior of a supported lipid bilayer (SLB) on a silicon surface with various 100 nm nanostructures. SLBs have been successfully grown from a small spot of a lipid molecule source both on a flat surface and uneven surfaces with 100 nm up-and-down nanostructures. After an hour, the self-spreading SLB forms a large circle or an ellipse depending on the nanostructure pattern.

View Article and Find Full Text PDF

Morphology control is a long-standing problem that needs to be solved for making the switching mechanism of copper 7,7,8,8-tetracyano-p-quinodimethane (CuTCNQ) understood all the time, but up till now how many morphologies CuTCNQ possesses and which morphology should be responsible for the on/off switching phenomenon are still unclear. A new morphology of CuTCNQ, namely the tubular structure, has been obtained and characterized in our experiment, whose formation mechanism has also been investigated. Through characterizing, we can conclude that the tubular structure belongs to the phase I, which can be further confirmed by the electrical measurements.

View Article and Find Full Text PDF

We have examined the stimulation and recording properties of conjugated polymer microelectrode arrays as interfaces with neural networks of dissociated cortical cells. In particular the stimulation properties were investigated as a means of supplying a neural network with information. The stimulation efficiency at low stimulation voltages was evaluated and referenced to bare indium tin oxide (ITO) electrodes.

View Article and Find Full Text PDF

The direct observation of individual molecules in action is required for a better understanding of the mechanisms of biological reactions. We used a high-speed atomic force microscope (AFM) in solution to visualize short DNA fragments in motion. The technique represents a new approach in analyzing molecular interactions, and it allowed us to observe real-time images of biotinylated DNA binding to/dissociating from streptavidin protein.

View Article and Find Full Text PDF

We propose a microchannel device that employs a surface-supported self-spreading lipid bilayer membrane as a molecule carrying medium. The device has a micropattern structure fabricated on a SiO2 surface by photolithography, into which a self-spreading lipid bilayer membrane is introduced as the carrier medium. This system corresponds to a microchannel with a single lipid bilayer membrane height of approximately 5 nm, compared with conventional micro-fluidic channels that have a section height and width of at least several microm.

View Article and Find Full Text PDF

A molecular junction of a poly(p-phenyleneethynylene)s derivative with thioacetate end groups (TA-PPE) was fabricated by self-assembling. Nanogap electrodes made by electroplating technique was used to couple thiol end groups of TA-PPE molecules. Room temperature current-voltage characteristics of the molecular junction exhibited highly periodic, repeatable, and identical stepwise features.

View Article and Find Full Text PDF

Inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) acts as a ligand-gated channel that mediates neuronal signals by releasing Ca(2+) from the endoplasmic reticulum. The three-dimensional (3D) structure of tetrameric IP(3)R has been demonstrated by using electron microscopy (EM) with static specimens; however, the dynamic aspects of the IP(3)R structure have never been visualized in a native environment. Here we attempt to measure the surface topography of IP(3)R in solution using atomic force microscopy (AFM).

View Article and Find Full Text PDF