Publications by authors named "Kei-Lai Fong"

Peginesatide, a polyethylene glycol (PEG)ylated peptide-based erythropoiesis-stimulating agent, stimulates the erythropoietin receptor dimer that governs erythropoiesis. Studies were designed to determine the erythropoietic response, pharmacokinetics (PK), tissue distribution, metabolism, and excretion of peginesatide in nonhuman primates following a single i.v.

View Article and Find Full Text PDF

The pharmacokinetics (PK) (absorption, distribution, metabolism, excretion) of peginesatide, a synthetic, PEGylated, investigational, peptide-based erythropoiesis-stimulating agent (ESA), was evaluated in rats. The PK profile was evaluated at 0.1-5 mg·kg(-1) IV using unlabeled or [(14)C]-labeled peginesatide.

View Article and Find Full Text PDF

Apremilast is a novel, orally available small molecule that specifically inhibits PDE4 and thus modulates multiple pro- and anti-inflammatory mediators, and is currently under clinical development for the treatment of psoriasis and psoriatic arthritis. The pharmacokinetics and disposition of [(14)C]apremilast was investigated following a single oral dose (20 mg, 100 μCi) to healthy male subjects. Approximately 58% of the radioactive dose was excreted in urine, while faeces contained 39%.

View Article and Find Full Text PDF

Peginesatide is a PEGylated, investigational, peptide-based erythropoiesis-stimulating agent (ESA) that was designed and engineered to stimulate specifically the erythropoietin receptor dimer that governs erythropoiesis. Clinical use of peginesatide is anticipated to result in chronic dosing in chronic kidney disease (CKD) patients, and the nonclinical data to support development should include an evaluation of carcinogenic potential evaluation. Peginesatide was not mutagenic or clastogenic in a standard genotoxicity battery of tests.

View Article and Find Full Text PDF

Background: Aperi- and postnatal reproduction toxicity study was conducted in rats treated with Hematide, a synthetic PEGylated peptidic erythropoiesis stimulating agent (ESA).

Methods: Hematide, at IV doses of 0, 0.5, 3, and 15 mg/kg, was administered from implantation through lactation on gestation days (GDs) 5 and 18 and lactation day (LD) 13.

View Article and Find Full Text PDF

The subchronic toxicity of Hematide™, a synthetic PEGylated peptidic erythropoiesis-stimulating agent (ESA), was evaluated in CD-1 mice at intravenous doses of 0, 1, 5, 25, and 125 mg/kg administered once every 3 weeks for 3 months. Hematide displayed sustained plasma levels with reduced clearance and prolonged half-lives up to 59.4 hours that translated into sustained, pronounced polycythemia, bone marrow hyperplasia, and splenic and liver extramedullary hematopoiesis.

View Article and Find Full Text PDF

Hematide is a synthetic peptide-based, PEGylated erythropoiesis-stimulating agent, which is being developed for the chronic treatment of anaemia associated with chronic renal failure. To support the safety of long-term dosing of chronic renal failure patients, a comprehensive toxicology programme was implemented including rat subchronic and chronic studies. Rats were administered 0, 0.

View Article and Find Full Text PDF

Hematide is a synthetic peptide-based, pegylated erythropoiesis stimulating agent in clinical development for treatment of anemia. To support chronic clinical dosing requirements, a 9-month repeat dose IV monkey safety study was undertaken. Animals received 0, 0.

View Article and Find Full Text PDF

The pharmacology, toxicokinetics, and safety of Hematide, a synthetic peptidic erythropoiesis-stimulating agent (ESA), were characterized. Hematide was given intravenously (0, 0.5, 5, and 50 mg/kg) weekly for five weeks with a 6- (rat) and 12-week (monkey) recovery period.

View Article and Find Full Text PDF

Objective: To evaluate the preclinical erythropoiesis stimulating properties of Hematide, a novel, PEGylated, synthetic peptide for the treatment of anemia associated with chronic kidney disease and cancer.

Methods: The in vitro activity of Hematide was assessed in competitive binding, proliferation, signal transduction, and apoptosis assays, and in erythroid colony-forming assays with CD34(+) cells purified from human bone marrow. Erythropoiesis and pharmacokinetics were evaluated in rat, monkey, and a rat chronic renal insufficiency (CRI) model following single administration.

View Article and Find Full Text PDF