Publications by authors named "Kei Yasuda"

The spectral bat (Vampyrum spectrum), the largest bat species in the Americas, is considered Near Threatened by the International Union for Conservation of Nature and is listed as a species of special concern or endangered in several countries throughout its range. Although the species is known as carnivorous, data on basic ecology, including habitat selection and primary diet items, are limited owing to its relative rarity and difficulty in capturing the species. Leveraging advances in DNA metabarcoding and using radio-telemetry, we present novel information on the diet and movement of V.

View Article and Find Full Text PDF

Gain-of-function polymorphisms in the transcription factor IFN regulatory factor 5 (IRF5) are associated with an increased risk of developing systemic lupus erythematosus. However, the IRF5-expressing cell type(s) responsible for lupus pathogenesis in vivo is not known. We now show that monoallelic IRF5 deficiency in B cells markedly reduced disease in a murine lupus model.

View Article and Find Full Text PDF

Cyclic AMP (cAMP) is involved in many biological processes but little is known regarding its role in shaping immunity. Here we show that cAMP-PKA-CREB signaling (a pattern recognition receptor [PRR]-independent mechanism) regulates conventional type-2 Dendritic Cells (cDC2s) in mice and reprograms their Th17-inducing properties via repression of IRF4 and KLF4, transcription factors essential for cDC2-mediated Th2 induction. In mice, genetic loss of IRF4 phenocopies the effects of cAMP on Th17 induction and restoration of IRF4 prevents the cAMP effect.

View Article and Find Full Text PDF

Casitas B lymphoma (c-Cbl) is an E3 ubiquitin ligase and a negative regulator of colorectal cancer (CRC). Despite its high expression in immune cells, the effect of c-Cbl on the tumor microenvironment remains poorly understood. Here we demonstrate that c-Cbl alters the tumor microenvironment and suppresses Programmed cell death-1 (PD-1) protein, an immune checkpoint receptor.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of autoantibodies against nucleic acids and nucleoproteins. Anti-dsDNA Abs are considered a hallmark of SLE, and previous studies have indicated that nucleic acid-containing immune complexes (ICs) induce B cell and dendritic cell activation in a TLR-dependent process. How ICs containing nucleic acids affect neutrophil function has not been well investigated.

View Article and Find Full Text PDF

The spores of pathogenic bacteria are involved in host entry and the initial encounter with the host immune system. How bacterial spores interact with host immunity, however, remains poorly understood. Here, we show that the spores of (BA), the etiologic agent of anthrax, possess an intrinsic ability to induce host immune responses.

View Article and Find Full Text PDF

Objective: Polymorphisms in the transcription factor interferon regulatory factor 5 (IRF5) are associated with an increased risk of developing rheumatoid arthritis (RA). This study was undertaken to determine the role of IRF5 in a mouse model of arthritis development.

Methods: K/BxN serum-transfer arthritis was induced in mice deficient in IRF5, or lacking IRF5 only in myeloid cells, and arthritis severity was evaluated.

View Article and Find Full Text PDF

Premature atherosclerosis is a severe complication of lupus and other systemic autoimmune disorders. Gain-of-function polymorphisms in IFN regulatory factor 5 (IRF5) are associated with an increased risk of developing lupus, and IRF5 deficiency in lupus mouse models ameliorates disease. However, whether IRF5 deficiency also protects against atherosclerosis development in lupus is not known.

View Article and Find Full Text PDF

As part of the Immunological Genome Project (ImmGen), gene expression was determined in unstimulated (circulating) mouse neutrophils and three populations of neutrophils activated in vivo, with comparison among these populations and to other leukocytes. Activation conditions included serum-transfer arthritis (mediated by immune complexes), thioglycollate-induced peritonitis, and uric acid-induced peritonitis. Neutrophils expressed fewer genes than any other leukocyte population studied in ImmGen, and down-regulation of genes related to translation was particularly striking.

View Article and Find Full Text PDF

Interferon regulatory factor 5 (IRF5) polymorphisms are strongly associated with an increased risk of developing the autoimmune disease systemic lupus erythematosus. In mouse lupus models, IRF5-deficiency was shown to reduce disease severity consistent with an important role for IRF5 in disease pathogenesis. However these mouse studies were confounded by the recent demonstration that the IRF5 knockout mouse line contained a loss-of-function mutation in the dedicator of cytokinesis 2 (DOCK2) gene.

View Article and Find Full Text PDF

Interferon regulatory factor 5-deficient (IRF5 (-/-) ) mice have been used for many studies of IRF5 biology. A recent report identifies a mutation in dedicator of cytokinesis 2 (DOCK2) as being responsible for the abnormal B-cell development phenotype observed in the IRF5 (-/-) line. Both dedicator of cytokinesis 2 (DOCK2) and IRF5 play important roles in immune cell function, raising the issue of whether immune effects previously associated with IRF5 are due to IRF5 or DOCK2.

View Article and Find Full Text PDF

Polymorphisms in the transcription factor IFN regulatory factor 5 (IRF5) are strongly associated in human genetic studies with an increased risk of developing the autoimmune disease systemic lupus erythematosus. However, the biological role of IRF5 in lupus pathogenesis has not previously been tested in an animal model. In this study, we show that IRF5 is absolutely required for disease development in the FcgammaRIIB(-/-)Yaa and FcgammaRIIB(-/-) lupus models.

View Article and Find Full Text PDF

Although TLR9 was originally thought to specifically recognize microbial DNA, it is now evident that mammalian DNA can be an effective TLR9 ligand. However, the DNA sequence required for TLR9 activation is controversial, as studies have shown conflicting results depending on the nature of the DNA backbone, the route of DNA uptake, and the cell type being studied. In systemic lupus erythematosus, a major route whereby DNA gains access to intracellular TLR9, and thereby activates dendritic cells (DCs), is through uptake as a DNA-containing immune complex.

View Article and Find Full Text PDF

Type I IFNs play an important, yet poorly characterized, role in systemic lupus erythematosus. To better understand the interplay between type I IFNs and the activation of autoreactive B cells, we evaluated the effect of type I IFN receptor (IFNAR) deficiency in murine B cell responses to common TLR ligands. In comparison to wild-type B cells, TLR7-stimulated IFNAR(-/-) B cells proliferated significantly less well and did not up-regulate costimulatory molecules.

View Article and Find Full Text PDF

Introduction: B cells have many different roles in systemic lupus erythematosus (SLE), ranging from autoantigen recognition and processing to effector functions (for example, autoantibody and cytokine secretion). Recent studies have shown that intracellular nucleic acid-sensing receptors, Toll-like receptor (TLR) 7 and TLR9, play an important role in the pathogenesis of SLE. Dual engagement of rheumatoid factor-specific AM14 B cells through the B-cell receptor (BCR) and TLR7/9 results in marked proliferation of autoimmune B cells.

View Article and Find Full Text PDF

Exacerbation of disease in systemic lupus erythematosus (SLE) is associated with bacterial infection. In conventional dendritic cells (cDCs), the TLR4 ligand bacterial LPS induces IFN-beta gene expression but does not induce IFN-alpha. We hypothesized that when cDCs are primed by cytokines, as may frequently be the case in SLE, LPS would then induce the production of IFN-alpha, a cytokine believed to be important in lupus pathogenesis.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease for which current therapy is suboptimal. SLE is characterized by autoantibody production, with renal disease and premature atherosclerosis being common and severe manifestations causing appreciable morbidity and mortality. Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists are widely used in the treatment of diabetes mellitus for their insulin-sensitizing properties, but also have immunomodulatory effects.

View Article and Find Full Text PDF

Dendritic cell (DC) activation by nucleic acid-containing IgG complexes is implicated in systemic lupus erythematosus (SLE) pathogenesis. However, it has been difficult to definitively examine the receptors and signaling pathways by which this activation is mediated. Because mouse FcgammaRs recognize human IgG, we hypothesized that IgG from lupus patients might stimulate mouse DCs, thereby facilitating this analysis.

View Article and Find Full Text PDF

Unmethylated CpG motifs in bacterial DNA, but not in vertebrate DNA, are known to trigger an inflammatory response of antigen-presenting cells (APC). In this study, we investigated the cytokine release from murine dendritic cells (DC) by the addition of various types of DNA in the free or complexed form with cationic lipids. Naked plasmid DNA and Escherichia coli DNA with immunostimulatory unmethylated CpG motifs induced pro-inflammatory cytokine secretion from granulocyte-macrophage colony-stimulating factor (GM-CSF)-cultured bone marrow-derived DC and the DC cell-line, DC2.

View Article and Find Full Text PDF

One of the key issues of DNA-based therapies is the immunostimulatory effect caused by DNA, which it has a significant impact on the consequences of these therapies. This is a result of the recognition by Toll-like receptor-9 (TLR9); a pattern recognition receptor for unmethylated CpG motifs within DNA sequences. However, recent studies show that TLR9 can recognize non-CpG motifs and induce cellular activation when DNA is efficiently delivered to TLR9, for example, by cationic lipids.

View Article and Find Full Text PDF

Endosomally translocated host (self) DNA activates Toll-like receptor 9 (TLR9), while extracellular self-DNA does not. This inconsistency reflects poor endosomal DNA translocation but also implies that host DNA contains DNA sequences that function as ligands for TLR9. Herein we report that contrary to phosphorothioate (PS)-stabilized oligonucleotides (ODN), "natural" phosphodiester (PD) ODN lacking CpG motifs activate TLR9.

View Article and Find Full Text PDF

DNA/anti-DNA Ab immune complexes seem to play the critical roles in the development of systemic lupus erythematosus (SLE). However, little is known about the removal of DNA by MPhi and DC. We found that elicited peritoneal MPhis and BM-derived DCs from a lupus-prone strain of New Zealand Black/White F(1) (NZB/W) mice showed impaired DNA uptake and degradation compared with those from control ICR mice.

View Article and Find Full Text PDF

TLRs discriminate foreign from self via their specificity for pathogen-derived invariant ligands, an example being TLR9 recognizing bacterial unmethylated CpG motifs. In this study we report that endosomal translocation of CpG DNA via the natural endocytotic pathway is inefficient and highly saturable, whereas endosomal translocation of DNA complexed to the cationic lipid N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methylsulfate (DOTAP) is not. Interestingly, DOTAP-mediated enhanced endosomal translocation of otherwise nonstimulatory vertebrate DNA or of certain noncanonical CpG motifs triggers robust dendritic cell activation in terms of both up-regulation of CD40/CD69 and cytokine production, such as type I IFN and IL-6.

View Article and Find Full Text PDF

The identification of specific genetic loci that contribute to inflammatory and autoimmune diseases has proved difficult due to the contribution of multiple interacting genes, the inherent genetic heterogeneity present in human populations, and a lack of new mouse mutants. By using N-ethyl-N-nitrosourea (ENU) mutagenesis to discover new immune regulators, we identified a point mutation in the murine phospholipase Cg2 (Plcg2) gene that leads to severe spontaneous inflammation and autoimmunity. The disease is composed of an autoimmune component mediated by autoantibody immune complexes and B and T cell independent inflammation.

View Article and Find Full Text PDF

Previously, we showed that bacterial DNA and vertebrate DNA/cationic liposome complexes stimulate potent inflammatory responses in cultured mouse macrophages. In the present study, we examined whether endocytosis and subsequent acidification are associated with these responses. The endocytosis inhibitor, cytochalasin B, reduced tumor necrosis factor alpha (TNF-alpha) production by a plasmid DNA (pDNA)/cationic liposome complex.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioniflggsen2t7g52vv6a1aj269jasinug3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once