Publications by authors named "Kei Oguchi"

Genetic alterations in human epidermal growth factor receptor type 2 (HER2)/epidermal growth factor receptor (EGFR) are commonly associated with breast and lung cancers and glioblastomas. Cancers with avian erythroblastosis oncogene B (ERBB) deregulation are highly metastatic and can cause primary brain tumors. Currently, no pan-ERBB inhibitor with remarkable brain penetration is available.

View Article and Find Full Text PDF
Article Synopsis
  • TAS0728 is a novel compound that selectively binds to HER2 and inhibits its kinase activity, making it a potential new treatment for HER2-activated cancers.* -
  • Unlike other HER2 inhibitors, TAS0728 is resistant to high levels of ATP, demonstrating high specificity for HER2 over similar proteins like wild-type EGFR.* -
  • In studies, TAS0728 effectively reduced HER2 phosphorylation and induced cancer cell death, showing promising results in mouse models without significant toxicity, warranting further clinical trials.*
View Article and Find Full Text PDF

Trifluridine (FTD) and 2'-deoxy-5-fluorouridine (FdUrd), a derivative of 5-fluorouracil (5-FU), are antitumor agents that inhibit thymidylate synthase activity and their nucleotides are incorporated into DNA. However, it is evident that several differences occur in the underlying antitumor mechanisms associated with these nucleoside analogues. Recently, TAS-102 (composed of FTD and tipiracil hydrochloride, TPI) was shown to prolong the survival of patients with colorectal cancer who received a median of 2 prior therapies, including 5-FU.

View Article and Find Full Text PDF

TAS-102 is a novel oral nucleoside antitumor agent containing trifluridine (FTD) and tipiracil hydrochloride (TPI). The compound improves overall survival of colorectal cancer (CRC) patients who are insensitive to standard chemotherapies. FTD possesses direct antitumor activity since it inhibits thymidylate synthase (TS) and is itself incorporated into DNA.

View Article and Find Full Text PDF

Actin-related proteins (Arps) have been reported to be localized in the cell nucleus, and implicated in the regulation of chromatin and nuclear structure, as well as being involved in cytoplasmic functions. We demonstrate here that mouse ArpM1, which closely resembles the conventional actin, is expressed exclusively in the testis, particularly in haploid germ cells. ArpM1 protein first appears in the round spermatid and changes its localization dynamically in the nucleus during spermiogenesis.

View Article and Find Full Text PDF