Advances in machine learning and artificial intelligence (AI) have enabled the extraction of information such as perception and motor intention from neural activities, which is called neural decoding. A recent study demonstrated that mental imagery can be reconstructed from brain activity measured using functional magnetic resonance imaging. This article describes the method of mental image reconstruction and the underlying technologies that support it.
View Article and Find Full Text PDFPrimates must adapt to changing environments by optimizing their behavior to make beneficial choices. At the core of adaptive behavior is the orbitofrontal cortex (OFC) of the brain, which updates choice value through direct experience or knowledge-based inference. Here, we identify distinct neural circuitry underlying these two separate abilities.
View Article and Find Full Text PDFDynamic mode (DM) decomposition decomposes spatiotemporal signals into basic oscillatory components (DMs). DMs can improve the accuracy of neural decoding when used with the nonlinear Grassmann kernel, compared to conventional power features. However, such kernel-based machine learning algorithms have three limitations: large computational time preventing real-time application, incompatibility with non-kernel algorithms, and low interpretability.
View Article and Find Full Text PDFMidbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing.
View Article and Find Full Text PDFTo be the most successful, primates must adapt to changing environments and optimize their behavior by making the most beneficial choices. At the core of adaptive behavior is the orbitofrontal cortex (OFC) of the brain, which updates choice value through direct experience or knowledge-based inference. Here, we identify distinct neural circuitry underlying these two separate abilities.
View Article and Find Full Text PDFVisual images observed by humans can be reconstructed from their brain activity. However, the visualization (externalization) of mental imagery is challenging. Only a few studies have reported successful visualization of mental imagery, and their visualizable images have been limited to specific domains such as human faces or alphabetical letters.
View Article and Find Full Text PDFVisual illusions provide valuable insights into the brain's interpretation of the world given sensory inputs. However, the precise manner in which brain activity translates into illusory experiences remains largely unknown. Here, we leverage a brain decoding technique combined with deep neural network (DNN) representations to reconstruct illusory percepts as images from brain activity.
View Article and Find Full Text PDFMidbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing.
View Article and Find Full Text PDFThe sensory cortex is characterized by general organizational principles such as topography and hierarchy. However, measured brain activity given identical input exhibits substantially different patterns across individuals. Although anatomical and functional alignment methods have been proposed in functional magnetic resonance imaging (fMRI) studies, it remains unclear whether and how hierarchical and fine-grained representations can be converted between individuals while preserving the encoded perceptual content.
View Article and Find Full Text PDFSensory perception and memory recall generate different conscious experiences. Although externally and internally driven neural activities signifying the same perceptual content overlap in the sensory cortex, their distribution in the prefrontal cortex (PFC), an area implicated in both perception and memory, remains elusive. Here, we test whether the local spatial configurations and frequencies of neural oscillations driven by perception and memory recall overlap in the macaque PFC using high-density electrocorticography and multivariate pattern analysis.
View Article and Find Full Text PDFAchievement of human-level image recognition by deep neural networks (DNNs) has spurred interest in whether and how DNNs are brain-like. Both DNNs and the visual cortex perform hierarchical processing, and correspondence has been shown between hierarchical visual areas and DNN layers in representing visual features. Here, we propose the brain hierarchy (BH) score as a metric to quantify the degree of hierarchical correspondence based on neural decoding and encoding analyses where DNN unit activations and human brain activity are predicted from each other.
View Article and Find Full Text PDFCanonical correlation analysis (CCA) serves to identify statistical dependencies between pairs of multivariate data. However, its application to high-dimensional data is limited due to considerable computational complexity. As an alternative to the conventional CCA approach that requires polynomial computational time, we propose an algorithm that approximates CCA using quantum-inspired computations with computational time proportional to the logarithm of the input dimensionality.
View Article and Find Full Text PDFDeep neural networks (DNNs) have recently been applied successfully to brain decoding and image reconstruction from functional magnetic resonance imaging (fMRI) activity. However, direct training of a DNN with fMRI data is often avoided because the size of available data is thought to be insufficient for training a complex network with numerous parameters. Instead, a pre-trained DNN usually serves as a proxy for hierarchical visual representations, and fMRI data are used to decode individual DNN features of a stimulus image using a simple linear model, which are then passed to a reconstruction module.
View Article and Find Full Text PDFThe mental contents of perception and imagery are thought to be encoded in hierarchical representations in the brain, but previous attempts to visualize perceptual contents have failed to capitalize on multiple levels of the hierarchy, leaving it challenging to reconstruct internal imagery. Recent work showed that visual cortical activity measured by functional magnetic resonance imaging (fMRI) can be decoded (translated) into the hierarchical features of a pre-trained deep neural network (DNN) for the same input image, providing a way to make use of the information from hierarchical visual features. Here, we present a novel image reconstruction method, in which the pixel values of an image are optimized to make its DNN features similar to those decoded from human brain activity at multiple layers.
View Article and Find Full Text PDFFront Neuroinform
August 2018
Brain decoding with multivariate classification and regression has provided a powerful framework for characterizing information encoded in population neural activity. Classification and regression models are respectively used to predict discrete and continuous variables of interest. However, cognitive and behavioral parameters that we wish to decode are often ordinal variables whose values are discrete but ordered, such as subjective ratings.
View Article and Find Full Text PDFThe inferior temporal cortex (ITC) contains neurons selective to multiple levels of visual categories. However, the mechanisms by which these neurons collectively construct hierarchical category percepts remain unclear. By comparing decoding accuracy with simultaneously acquired electrocorticogram (ECoG), local field potentials (LFPs), and multi-unit activity in the macaque ITC, we show that low-frequency LFPs/ECoG in the early evoked visual response phase contain sufficient coarse category (e.
View Article and Find Full Text PDFNeurons in high-level visual areas respond to more complex visual features with broader receptive fields (RFs) compared to those in low-level visual areas. Thus, high-level visual areas are generally considered to carry less information regarding the position of seen objects in the visual field. However, larger RFs may not imply loss of position information at the population level.
View Article and Find Full Text PDFPrepared movements are more efficient than those that are not prepared for. Although changes in cortical activity have been observed prior to a forthcoming action, the circuits involved in motor preparation remain unclear. Here, we use in vivo two-photon calcium imaging to uncover changes in the motor cortex during variable waiting periods prior to a forepaw reaching task in mice.
View Article and Find Full Text PDFHighly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs.
View Article and Find Full Text PDFData-driven neuroscience aims to find statistical relationships between brain activity and task behavior from large-scale datasets. To facilitate high-throughput data processing and modeling, we created BrainLiner as a web platform for sharing time-aligned, brain-behavior data. Using an HDF5-based data format, BrainLiner treats brain activity and data related to behavior with the same salience, aligning both behavioral and brain activity data on a common time axis.
View Article and Find Full Text PDFWe successfully established a mass production system for an influenza virus-like particle (VLP) vaccine using a synthetic H5 hemagglutinin (HA) gene codon-optimized for the silkworm. A recombinant baculovirus containing the synthetic gene was inoculated into silkworm pupae. Four days after inoculation, the hemagglutination titer in homogenates from infected pupae reached a mean value of 0.
View Article and Find Full Text PDFHow visual object categories are represented in the brain is one of the key questions in neuroscience. Studies on low-level visual features have shown that relative timings or phases of neural activity between multiple brain locations encode information. However, whether such temporal patterns of neural activity are used in the representation of visual objects is unknown.
View Article and Find Full Text PDFRecognition of faces and written words is associated with category-specific brain activation in the ventral occipitotemporal cortex (vOT). However, topological and functional relationships between face-selective and word-selective vOT regions remain unclear. In this study, we collected data from patients with intractable epilepsy who underwent high-density recording of surface field potentials in the vOT.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2015
Kinases in a developing neuron play important roles in elongating a neurite with their complex interactions. To elucidate the effect of each kinase on neurite elongation and regeneration from a small set of experiments, we applied machine learning methods to synthetic datasets based on a biologically feasible model. The result showed the ridged partial least squares (RPLS) algorithm performed better than other standard algorithms such as naive Bayes classifier, support vector machines and random forest classification.
View Article and Find Full Text PDFThe goal of brain-machine interface (BMI) research is to interpret brain signals in order to control an external device. Substantial progress toward this goal has been achieved over the last decade. Currently, BMI algorithms can translate neural signals into motor commands that reproduce arm-reaching and hand-grasping movements in artificial actuators, thereby promising the restoration of limb mobility in paralyzed people.
View Article and Find Full Text PDF