Publications by authors named "Kei Hiruma"

includes agriculturally and scientifically important pathogens that infect numerous plants. They can also adopt an endophytic lifestyle, refraining from causing disease and/or even promoting plant growth when inoculated on a non-susceptible host. In this manner, the host range of a fungus can shift, depending on whether it exhibits endophytic or pathogenic lifestyles.

View Article and Find Full Text PDF

Plants acquire phosphorus (P) primarily as inorganic phosphate (Pi) from the soil. Under Pi deficiency, plants induce an array of physiological and morphological responses, termed phosphate starvation response (PSR), thereby increasing Pi acquisition and use efficiency. However, the mechanisms by which plants adapt to Pi deficiency remain to be elucidated.

View Article and Find Full Text PDF

Plant-associated fungi show diverse lifestyles from pathogenic to mutualistic to the host; however, the principles and mechanisms through which they shift the lifestyles require elucidation. The root fungus Colletotrichum tofieldiae (Ct) promotes Arabidopsis thaliana growth under phosphate limiting conditions. Here we describe a Ct strain, designated Ct3, that severely inhibits plant growth.

View Article and Find Full Text PDF

A diverse lineage of microorganisms inhabits plant roots and interacts with plants in various ways. Further, these microbes communicate and interact with each other within the root microbial community. These symbioses add an array of influences, such as plant growth promotion or indirect protection to the host plant.

View Article and Find Full Text PDF

In natural and agricultural ecosystems, survival and growth of plants depend substantially on residing microbes in the endosphere and rhizosphere. Although numerous studies have reported the presence of plant-growth promoting bacteria and fungi in below-ground biomes, it remains a major challenge to understand how sets of microbial species positively or negatively affect plants' performance. By conducting a series of single- and dual-inoculation experiments of 13 plant-associated fungi targeting a Brassicaceae plant species ( var.

View Article and Find Full Text PDF

In Arabidopsis thaliana, PROPEPs and their derived elicitor-active Pep epitopes provide damage-associated molecular patterns (DAMPs), which trigger defence responses through cell-surface receptors PEPR1 and PEPR2. In addition, Pep peptides induce root growth inhibition and root hair formation, however their relationships and coordinating mechanisms are poorly understood. Here, we reveal that Pep1-mediated root hair formation requires PEPR-associated kinases BAK1/BKK1 and BIK1/PBL1, ethylene, auxin and root hair differentiation regulators, in addition to PEPR2.

View Article and Find Full Text PDF

Plants live in constantly changing and often unfavorable or stressful environments. Environmental changes induce biotic and abiotic stress, which, in turn, may cause genomic DNA damage. Hence, plants simultaneously suffer abiotic/biotic stress and DNA damage.

View Article and Find Full Text PDF

Under natural conditions, plants generate a vast array of secondary metabolites. Several of these accumulate at widely varying levels in the same plant species and are reportedly critical for plant adaptation to abiotic and/or biotic stresses. Some secondary metabolite pathways are required for beneficial interactions with bacterial and fungal microbes and are also regulated by host nutrient availability so that beneficial interactions are enforced.

View Article and Find Full Text PDF

Owing to a technical error, this Perspective was originally published without its received and accepted dates; the dates "Received: 31 December 2017; Accepted: 23 March 2018" have now been included in all versions.

View Article and Find Full Text PDF

Brassicaceae plants have lost symbiotic interactions with mutualistic mycorrhizal fungi, but, nonmycorrhizal Brassicaceae associate with diverse taxonomic groups of mutualistic root-endophytic fungi. Distantly related fungal endophytes of Brassicaceae plants transfer phosphorus to the hosts and promote plant growth, thereby suggesting that the beneficial function was independently acquired via convergent evolution. These beneficial interactions appear tightly regulated by the tryptophan-derived secondary metabolite pathway, which specifically developed in Brassicaceae.

View Article and Find Full Text PDF
Article Synopsis
  • Maximizing microbial functions in agriculture is crucial for addressing ecosystem degradation and climate change.
  • Managing diverse plant-associated microbiomes poses significant challenges in agroecosystems.
  • Interdisciplinary strategies, including informatics, microfluidics, robotics, and machine learning, can optimize core microbiomes to enhance resource efficiency and stress resistance.
View Article and Find Full Text PDF

Plant defense against herbivores is modulated by herbivore-associated molecular patterns (HAMPs) from oral secretions (OS) and/or saliva of insects. Furthermore, feeding wounds initiate plant self-damage responses modulated by danger-associated molecular patterns (DAMPs) such as immune defense-promoting plant elicitor peptides (Peps). While temporal and spatial co-existence of both patterns during herbivory implies a possibility of their close interaction, the molecular mechanisms remain undetermined.

View Article and Find Full Text PDF

In mammalian cells, the transcription factor p53 plays a crucial role in transmitting DNA damage signals to maintain genome integrity. However, in plants, orthologous genes for p53 and checkpoint proteins are absent. Instead, the plant-specific transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) controls most of the genes induced by gamma irradiation and promotes DNA repair, cell cycle arrest, and stem cell death.

View Article and Find Full Text PDF
Article Synopsis
  • Glutathione (GSH) and indole glucosinolates (IGs) play crucial roles in the immune response of the plant Arabidopsis, aiding both pre- and post-pathogen invasion resistance.
  • The study identifies Glutathione-Transferase class-tau member 13 (GSTU13) as a key player in the PENETRATION2 (PEN2) immune pathway, which is critical for IG metabolism.
  • Mutant plants lacking functional GSTU13 show increased vulnerability to fungal pathogens and impaired execution of immune responses, indicating its essential role in linking GSH to IG metabolism in plant immunity.
View Article and Find Full Text PDF

Plant immune responses triggered upon recognition of microbe-associated molecular patterns (MAMPs) typically restrict pathogen growth without a host cell death response. We isolated two Arabidopsis mutants, derived from accession Col-0, that activated cell death upon inoculation with nonadapted fungal pathogens. Notably, the mutants triggered cell death also when treated with bacterial MAMPs such as flg22.

View Article and Find Full Text PDF

The genome of the hemibiotrophic anthracnose fungus, Colletotrichum higginsianum, encodes a large repertoire of candidate-secreted effectors containing LysM domains, but the role of such proteins in the pathogenicity of any Colletotrichum species is unknown. Here, we characterized the function of two effectors, ChELP1 and ChELP2, which are transcriptionally activated during the initial intracellular biotrophic phase of infection. Using immunocytochemistry, we found that ChELP2 is concentrated on the surface of bulbous biotrophic hyphae at the interface with living host cells but is absent from filamentous necrotrophic hyphae.

View Article and Find Full Text PDF

The sessile nature of plants forced them to evolve mechanisms to prioritize their responses to simultaneous stresses, including colonization by microbes or nutrient starvation. Here, we compare the genomes of a beneficial root endophyte, Colletotrichum tofieldiae and its pathogenic relative C. incanum, and examine the transcriptomes of both fungi and their plant host Arabidopsis during phosphate starvation.

View Article and Find Full Text PDF

A series of bimetallic coordination polymers with the elemental composition of [Cd(II)L2][Au(CN)2]2, (L = 3-methylpyridine, 4-ethylpyridine, 3,5-lutidine and 3-fluoropyridine) were synthesized and their crystal structures were determined. In all of the investigated compounds, there existed a pair of Au-Au atoms whose interatomic distance was shorter than the sum of van der Waals radii (0.36 nm) as an indication of the aurophilic interaction.

View Article and Find Full Text PDF

A staggering diversity of endophytic fungi associate with healthy plants in nature, but it is usually unclear whether these represent stochastic encounters or provide host fitness benefits. Although most characterized species of the fungal genus Colletotrichum are destructive pathogens, we show here that C. tofieldiae (Ct) is an endemic endophyte in natural Arabidopsis thaliana populations in central Spain.

View Article and Find Full Text PDF

This chapter describes how to apply microbe-associated molecular pattern (MAMP) or damage-associated molecular pattern (DAMP) solutions to Arabidopsis roots to trace defense responses in the root. Plants sense the presence of microbes via the perception of MAMPs or DAMPs by surface-localized pattern recognition receptors. The mechanisms governing plant root immunity are poorly characterized compared with those underlying plant immunity in the leaf, despite the fact that plant roots constantly interact with countless microbes living in soils that carry potential MAMPs and could stimulate the production of plant-derived DAMPs during colonization.

View Article and Find Full Text PDF

After Colletotrichum storage methods in Chapter 23 , we describe here experimental methods for the inoculation of Colletotrichum higginsianum (C.h.) on Arabidopsis leaves.

View Article and Find Full Text PDF

In this chapter we describe methods for long-term preservation of ascomycete genus Colletotrichum species. Colletotrichum species employ a hemibiotrophic infection strategy and cause clear anthracnose diseases on various host plants including the model plant Arabidopsis thaliana. Their infection proceeds in a highly synchronized manner, which is helpful for the dissection of the fungus-plant interactions at the molecular level.

View Article and Find Full Text PDF

Pathogens infect a host by suppressing defense responses induced upon recognition of microbe-associated molecular patterns (MAMPs). Despite this suppression, MAMP receptors mediate basal resistance to limit host susceptibility, via a process that is poorly understood. The Arabidopsis leucine-rich repeat (LRR) receptor kinase BAK1 associates and functions with different cell surface LRR receptors for a wide range of ligands, including MAMPs.

View Article and Find Full Text PDF

Recognition of microbial challenges leads to enhanced immunity at both the local and systemic levels. In Arabidopsis, EFR and PEPR1/PEPR2 act as the receptor for the bacterial elongation factor EF-Tu (elf18 epitope) and for the endogenous PROPEP-derived Pep epitopes, respectively. The PEPR pathway has been described to mediate defence signalling following microbial recognition.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5e4uhpb20rc04jdeo0gre5a6aptfd3pv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once