Publications by authors named "Kehrl J"

G-protein coupled receptors (GPCRs) are encoded by nonabundant mRNAs, and it is difficult to detect them reliably with the highly parallel methods that are in general use. Because of this, we developed and validated a sensitive, specific, semi-quantitative method for detecting these transcripts. We have used the method to profile GPCR transcripts in white blood cells (WBCs)-B, CD4, CD8, NK, and dendritic cells; monocytes, and macrophage-like monocytes treated with granulocyte-macrophage colony-stimulating factor-as well as platelets.

View Article and Find Full Text PDF

Introduction: The serine/threonine with-no-lysine (WNK) kinase family function in blood pressure control, electrolyte homeostasis, and cellular osmoregulation. These kinases and their downstream effectors are considered promising therapeutic targets in hypertension and stroke. However, the role of WNK kinases in immune cells remains poorly understood.

View Article and Find Full Text PDF

Ligand-engaged chemokine receptors trigger nucleotide exchange in heterotrimeric Gα proteins, which stimulates cytoskeletal reorganization and cell polarity changes. To better understand the signaling events responsible for these cellular changes, we focused on early changes in F-actin dynamics after engagement of the chemokine receptor CXCR5 in murine splenic B cells. Within 10 seconds of exposure to the CXCR5 ligand CXCL13, three-dimensional lamellar-like pseudopods and F-actin-rich ridges appeared.

View Article and Find Full Text PDF

Resident memory T cells (Ts) help control local immune homeostasis and contribute to tissue-protective immune responses. The local cues that guide their differentiation and localization are poorly defined. We demonstrate that mucosal vascular addressin cell adhesion molecule 1, a ligand for the gut-homing receptor αβ integrin, in the presence of retinoic acid and transforming growth factor-β (TGF-β) provides a co-stimulatory signal that induces blood cluster of differentiation (CD8 T cells to adopt a T-like phenotype.

View Article and Find Full Text PDF

The trimeric SARS-CoV-2 Spike protein mediates viral attachment facilitating cell entry. Most COVID-19 vaccines direct mammalian cells to express the Spike protein or deliver it directly via inoculation to engender a protective immune response. The trafficking and cellular tropism of the Spike protein in vivo and its impact on immune cells remains incompletely elucidated.

View Article and Find Full Text PDF

Members of the Regulator of G-protein signaling (Rgs) family regulate the extent and timing of G protein signaling by increasing the GTPase activity of Gα protein subunits. The Rgs family member is one of the most up-regulated genes in tissue-resident memory (T) T cells when compared to their circulating T cell counterparts. Functionally, Rgs1 preferentially deactivates Gαq, and Gαi protein subunits and can therefore also attenuate chemokine receptor-mediated immune cell trafficking.

View Article and Find Full Text PDF

The trimeric SARS-CoV-2 Spike protein mediates viral attachment facilitating cell entry. Most COVID-19 vaccines direct mammalian cells to express the Spike protein or deliver it directly via inoculation to engender a protective immune response. The trafficking and cellular tropism of the Spike protein and its impact on immune cells remains incompletely elucidated.

View Article and Find Full Text PDF

The integrin lymphocyte function-associated antigen 1 (LFA-1) helps to coordinate the migration, adhesion, and activation of T cells through interactions with intercellular adhesion molecule 1 (ICAM-1) and ICAM-2. LFA-1 is activated during the engagement of chemokine receptors and the T cell receptor (TCR) through inside-out signaling, a process that is partially mediated by phosphoinositide 3-kinase (PI3K) and its product phosphatidylinositol 3,4,5-trisphosphate (PIP). To evaluate potential roles of PI3K in LFA-1 activation, we designed a library of CRISPR/single guide RNAs targeting known and potential PIP-binding proteins and screened for effects on the ability of primary mouse T cells to bind to ICAM-1.

View Article and Find Full Text PDF

B-cell activation and immune synapse (IS) formation with membrane-bound antigens are actin-dependent processes that scale positively with the strength of antigen-induced signals. Importantly, ligating the B-cell integrin, LFA-1, with ICAM-1 promotes IS formation when antigen is limiting. Whether the actin cytoskeleton plays a specific role in integrin-dependent IS formation is unknown.

View Article and Find Full Text PDF

Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage.

View Article and Find Full Text PDF

CD38 is a cell surface receptor capable of generating calcium-mobilizing second messengers. It has been implicated in host defense and cancer biology, but signaling mechanisms downstream of CD38 remain unclear. Mutations in LRRK2 (leucine-rich repeat kinase 2) are the most common genetic cause of Parkinson disease; it is also a risk factor for Crohn disease, leprosy, and certain types of cancers.

View Article and Find Full Text PDF

Actin plays a crucial role during cell motility, but the organization of F-actin filaments during lymphocyte migration has not been visualized . Here, we present a 4D imaging platform using high-resolution confocal intravital microscopy to precisely determine the F-actin filament profile during lymphocyte transendothelial migration and interstitial migration. This protocol allows prolonged live imaging by laser scanning microscopy with advanced spatial resolution compared with the traditional multi-photon intravital microscopy techniques.

View Article and Find Full Text PDF

Neutrophil trafficking, homeostatic and pathogen elicited, depends upon chemoattractant receptors triggering heterotrimeric G-protein Gαβ signaling, whose magnitude and kinetics are governed by RGS protein/Gα interactions. RGS proteins typically limit Gα signaling by reducing the duration that Gα subunits remain GTP bound and able to activate downstream effectors. Yet how in totality RGS proteins shape neutrophil chemoattractant receptor activated responses remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

β-Coronaviruses are a family of positive-strand enveloped RNA viruses that includes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Much is known regarding their cellular entry and replication pathways, but their mode of egress remains uncertain. Using imaging methodologies and virus-specific reporters, we demonstrate that β-coronaviruses utilize lysosomal trafficking for egress rather than the biosynthetic secretory pathway more commonly used by other enveloped viruses.

View Article and Find Full Text PDF

The cytosolic pattern recognition receptor NLRP3 senses host-derived danger signals and certain microbe-derived products in both humans and rodents. NLRP3 activation assembles an inflammasome complex that contains the adapter proteins ASC and caspase-1, whose activation triggers the maturation and release of the proinflammatory cytokines IL-1β and IL-18. S5 phosphorylation of NLRP3 prevents its oligomerization and activation, whereas dephosphorylation of this residue by the phosphatase PP2A allows NLRP3 activation.

View Article and Find Full Text PDF

Apoptosis is a form of programmed cell death in multicellular organisms. Bcl-2 prevents apoptosis and promotes cellular survival by neutralizing BH3 domain-containing proteins, which directly activate the pore-forming proteins BAX and BAK. However, Bcl-2 is not known to regulate other cell death effectors such as gasdermin D (GSDMD) or mixed lineage kinase domain-like (MLKL), whose activation causes pyroptosis and necroptosis, respectively.

View Article and Find Full Text PDF

During human immunodeficiency virus-1 (HIV-1) infection lymphoid organ follicular dendritic cells (FDCs) serve as a reservoir for infectious virus and an obstacle to curative therapies. Here, we identify a subset of lymphoid organ sinus lining macrophage (SMs) that provide a cell-cell contact portal, which facilitates the uptake of HIV-1 viral-like particles (VLPs) by FDCs and B cells in mouse lymph node. Central for portal function is the bridging glycoprotein MFG-E8.

View Article and Find Full Text PDF

Ligand-engaged chemoattractant receptors trigger Gα subunit nucleotide exchange, stimulating the activation of downstream effector molecules. Activated chemoattractant receptors also dock G protein-coupled receptor kinases (GRKs) that help mediate receptor desensitization. In this study, we show that the B cell-specific loss of GRK2 severely disrupts B cell trafficking and immune cell homeostasis.

View Article and Find Full Text PDF

The SARS (severe acute respiratory syndrome) outbreak was caused by a coronavirus (CoV) named the SARS-CoV. SARS pathology is propagated both by direct cytotoxic effects of the virus and aberrant activation of the innate immune response. Here, we identify several mechanisms by which a SARS-CoV open reading frame (ORF) activates intracellular stress pathways and targets the innate immune response.

View Article and Find Full Text PDF

Actin is essential for many cellular processes including cell motility. Yet the organization of F-actin filaments during lymphocyte transendothelial migration (TEM) and interstitial migration have not been visualized. Here we report a high-resolution confocal intravital imaging technique with LifeAct-GFP bone marrow reconstituted mice, which allowed visualization of lymphocyte F-actin in vivo.

View Article and Find Full Text PDF

Preselection thymocytes are normally retained in the thymic cortex, but the mechanisms responsible remain incompletely understood. We now report that deletion of genes encoding the E-protein transcription factors E2A and HEB disorders chemokine receptor expression on developing thymocytes to allow escape of preselection TCRCD8 thymocytes into the periphery. We document that CXCR4 expression normally anchors preselection thymocytes to the thymic cortex via interaction with its ligand CXCL12 on cortical thymic epithelial cells, and that disruption of CXCR4-CXCL12 engagements release preselection thymocytes from the thymic cortex.

View Article and Find Full Text PDF

IRGM is a risk factor for several inflammatory diseases, yet no direct link to immune regulation had been shown. In this issue of Molecular Cell, Mehto et al. (2019) report that IRGM limits NLRP3 inflammasome activation-by both direct inhibition of NLRP3/ASC oligomerization and selective autophagic destruction of NLRP3/ASC.

View Article and Find Full Text PDF

Macrophages exist as innate immune subsets that exhibit phenotypic heterogeneity and functional plasticity. Their phenotypes are dictated by inputs from the tissue microenvironment. G-protein-coupled receptors are essential in transducing signals from the microenvironment, and heterotrimeric Gα signaling links these receptors to downstream effectors.

View Article and Find Full Text PDF

The molecular mechanisms underlying the severe lung pathology that occurs during SARS-CoV infections remain incompletely understood. The largest of the SARS-CoV accessory protein open reading frames (SARS 3a) oligomerizes, dynamically inserting into late endosomal, lysosomal, and trans-Golgi-network membranes. While previously implicated in a non-inflammatory apoptotic cell death pathway, here we extend the range of SARS 3a pathophysiologic targets by examining its effects on necrotic cell death pathways.

View Article and Find Full Text PDF