Developing highly efficient and cost-competitive electrocatalysts for the hydrogen evolution reaction (HER), which can be applied to hydrogen production by water splitting, is of great significance in the future of the zero-carbon economy. Here, by means of first-principles calculations, we have scrutinized the HER catalytic capacity of single-atom catalysts (SACs) by embedding transition-metal atoms in the C and Mo vacancies of a tetragonal MoC slab, where the transition-metal atoms refer to Ti, V, Cr, Mn, Fe, Co, Ni and Cu. All the MoC-based SACs exhibit excellent electrical conductivity, which is favorable to charge transfer during HER.
View Article and Find Full Text PDFA new two-dimensional (2D) non-MXene transition metal carbide, MoC, was found using the USPEX code. Comprehensive first-principles calculations show that the MoC monolayer exhibits thermal, dynamic, and mechanical stability, which can ensure excellent durability in practical applications. The optimized structures of Li@(3×3)-MoC ( = 1-36) and Na@(3×3)-MoC ( = 1-32) were identified as prospective anode materials.
View Article and Find Full Text PDFAmyloid-β (Aβ) dimer as the smallest oligomer has recently been drawing attention due to its neurotoxicity, transient nature, and heterogeneity. The inhibition of Aβ dimer's aggregation is the key to primary intervention of Alzheimer's disease. Previous experimental studies have reported that quercetin, the widespread polyphenolic constituent of multiple fruits and vegetables, can hamper the formation of Aβ protofibrils and disaggregate Aβ fibrils.
View Article and Find Full Text PDFAmyloid-beta (Aβ) protofibrils are closely related to Alzheimer's disease. Their behaviors with or without the presence of Aβ fibrillization inhibitors have been intensively studied by molecular dynamics simulations. In this work, the molecular mechanisms of licochalcone A and licochalcone B on destabilizing Aβ(1-42) protofibrils are explored.
View Article and Find Full Text PDFThe fibrillization and deposition of amyloid-beta (Aβ) protofibrils are one of the important factors leading to Alzheimer's disease. Molecular dynamics simulations can offer information on intermolecular interaction mechanisms between Aβ protofibrils and Aβ fibrillization inhibitors. Here, in this work, we explore the early molecular mechanisms of (-)-epigallocatechin-3-gallate (EGCG) and apigenin on disrupting Aβ42 protofibrils based on molecular simulations.
View Article and Find Full Text PDFThe misfolding and self-assembly of amyloid-beta (Aβ) peptides are one of the most important factors contributing to Alzheimer's disease (AD). This study aims to reveal the inhibition mechanisms of (-)-epigallocatechin-3-gallate (EGCG) and genistein on the conformational changes of Aβ42 peptides by using molecular docking and molecular dynamics (MD) simulation. The results indicate that both EGCG and genistein have inhibitory effects on the conformational transition of Aβ42 peptide.
View Article and Find Full Text PDFCorrection for 'Discovery of intrinsic two-dimensional antiferromagnets from transition-metal borides' by Shiyao Wang et al., Nanoscale, 2021, 13, 8254-8263, DOI: 10.1039/D1NR01103K.
View Article and Find Full Text PDFIntrinsic two-dimensional (2D) magnets are promising materials for developing advanced spintronic devices. A few have already been synthesized from the exfoliation of van der Waals magnetic materials. In this work, by using ab initio calculations and Monte Carlo simulation, a series of 2D MBs (M = Cr, Mn or Fe; B = boron) are predicted possessing robust magnetism, sizeable magnetic anisotropy energy, and excellent structural stability.
View Article and Find Full Text PDFBovine serum albumin imprinted magnetic microspheres, with functional monomers of modified chitosan, N-isopropylacrylamide and sulfobetaine methacrylate, were successfully prepared and characterized in detail. Computational analyses showed that during the preparation process, modified chitosan can effortlessly form multiple non-covalent bonds with protein molecules. Temperature-sensitive N-isopropylacrylamide improves the elution efficiency by abating the mass transfer resistance.
View Article and Find Full Text PDFIn this paper we systematically investigate the loading capacity of raspberry-like nano/microspheres with highly cross-linked structure for the peptide, immunostimulating hexapeptide from human (IHH), by integrating both experimental and simulation efforts. The experimental results indicate that the loading capacities of raspberry-like nano/microspheres with different functionalized chains vary drastically. To provide theoretical insights into the observed phenomenon, the typical raspberry-like nano/microspheres were simplified as effective functionalized groups, thereby the interactions between them and IHH were accurately calculated by ab initio method.
View Article and Find Full Text PDFThe hydrogen abstraction reaction mechanisms of toluene molecule by NO3 radical were investigated theoretically with quantum chemistry and reaction kinetics. All the molecular structures, vibrational properties, and the intrinsic reaction coordinates were determined with B3LYP/6-311G(d,p). The non-dynamic electronic correlations were examined with the CASSCF dominant configurations.
View Article and Find Full Text PDFThe hierarchically macro/micro-porous silicon-carbon-nitrogen (Si-C-N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green.
View Article and Find Full Text PDFA relative complete study on the mechanisms of the proton transfer reactions of 2-thioxanthine was carried out with density functional theory. The models were designed with monohydrated and dihydrated microsolvent catalyses either with or without the presence of water solvent considered with the polarized continuum model (PCM). A total number of 114 complexes and 67 transition states were found with the B3LYP/6-311+G** calculations.
View Article and Find Full Text PDFThe decomposition reaction rate in the BCl(3)-C(3)H(6)-H(2) gas phase reaction system in preparing boron carbides was investigated based on the most favorable reaction pathways proposed by Jiang et al. [Theor. Chem.
View Article and Find Full Text PDFThe geometry, energy, internal rotation barrier, dipole moment, and molecular polarizability of the α- and β-chain models of poly(vinylidene cyanide-tricyanoethylene) [P(VDCN-TrCN)] were studied with density functional theory at the B3PW91/6-31G(d) level. The effects of the chain length and the TrCN content on the copolymer chain stability, the chain conformation, and the electrical properties of P(VDCN-TrCN) were examined and compared with those of poly(vinylidene fluoride-trifluoroethylene) and PVDCN to gauge whether P(VDCN-TrCN) would be expected to possess substantial piezoelectricity. The results of this study showed that the stability of the β conformation increases and the energy difference per monomer unit between the β- and α-chains decreases with increasing TrCN.
View Article and Find Full Text PDFThe reaction rate of propene pyrolysis was investigated based on the elementary reactions proposed in Qu et al., J Comput Chem 2009, 31, 1421. The overall reaction rate was developed with the steady-state approximation and the rate constants of the elementary reactions were determined with the variational transition state theory.
View Article and Find Full Text PDFThe gas-phase reaction pathways in preparing pyrolytic carbon with propene pyrolysis have been investigated in detail with a total number of 110 transition states and 50 intermediates. The structure of the species was determined with density functional theory at B3PW91/6-311G(d,p) level. The transition states and their linked intermediates were confirmed with frequency and the intrinsic reaction coordinates analyses.
View Article and Find Full Text PDF