Although human core body temperature is known to decrease with age, the age dependency of facial temperature and its potential to indicate aging rate or aging-related diseases remains uncertain. Here, we collected thermal facial images of 2,811 Han Chinese individuals 20-90 years old, developed the ThermoFace method to automatically process and analyze images, and then generated thermal age and disease prediction models. The ThermoFace deep learning model for thermal facial age has a mean absolute deviation of about 5 years in cross-validation and 5.
View Article and Find Full Text PDFThe development of anti-aging interventions requires quantitative measurement of biological age. Machine learning models, known as "aging clocks," are built by leveraging diverse aging biomarkers that vary across lifespan to predict biological age. In addition to traditional aging clocks harnessing epigenetic signatures derived from bulk samples, emerging technologies allow the biological age estimating at single-cell level to dissect cellular diversity in aging tissues.
View Article and Find Full Text PDFAging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need.
View Article and Find Full Text PDF