We present the first lattice QCD calculation of the universal axial γW-box contribution □_{γW}^{VA} to both superallowed nuclear and neutron beta decays. This contribution emerges as a significant component within the theoretical uncertainties surrounding the extraction of |V_{ud}| from superallowed decays. Our calculation is conducted using two domain wall fermion ensembles at the physical pion mass.
View Article and Find Full Text PDFWe present the first attempt to access the x dependence of the gluon unpolarized parton-distribution function (PDF), based on lattice simulations using the large-momentum effective theory approach. The lattice calculation is carried out with pion masses of 340 and 678 MeV on a (2+1)-flavor domain-wall fermion configuration with lattice spacing a=0.111 fm, for the gluon quasi-PDF matrix element with the nucleon momentum up to 0.
View Article and Find Full Text PDFWe report results on the proton mass decomposition and also on related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of N_{f}=2+1 domain wall fermion configurations with three lattice spacings and three volumes, and several pion masses including the physical pion mass. With fully nonperturbative renormalization (and universal normalization on both quark and gluon), we find that the quark energy and glue field energy contribute 32(4)(4)% and 36(5)(4)% respectively in the MS[over ¯] (modified minimal substraction) scheme at μ=2 GeV.
View Article and Find Full Text PDFWe report the first lattice QCD calculation of the glue spin in the nucleon. The lattice calculation is carried out with valence overlap fermions on 2+1 flavor domain-wall fermion gauge configurations on four lattice spacings and four volumes including an ensemble with physical values for the quark masses. The glue spin S_{G} in the Coulomb gauge in the modified minimal subtraction (MS[over ¯]) scheme is obtained with one-loop perturbative matching.
View Article and Find Full Text PDFWe report a lattice QCD calculation of the strange quark contribution to the nucleon's magnetic moment and charge radius. This analysis presents the first direct determination of strange electromagnetic form factors including at the physical pion mass. We perform a model-independent extraction of the strange magnetic moment and the strange charge radius from the electromagnetic form factors in the momentum transfer range of 0.
View Article and Find Full Text PDFAccording to the path-integral formalism of the hadronic tensor, the nucleon sea contains two distinct components called the connected sea (CS) and the disconnected sea (DS). We discuss how the CS and DS are accessed in the lattice QCD calculation of the moments of the parton distributions. We show that the CS and DS components of ū(x) + d(x) can be extracted by using recent data on the strangeness parton distribution, the CT10 global fit, and the lattice result of the ratio of the strange to u(d) moments in the disconnected insertion.
View Article and Find Full Text PDF