Although IKK-β has previously been shown as a negative regulator of IL-1β secretion in mice, this role has not been proven in humans. Genetic studies of NF-κB signaling in humans with inherited diseases of the immune system have not demonstrated the relevance of the NF-κB pathway in suppressing IL-1β expression. Here, we report an infant with a clinical pathology comprising neutrophil-mediated autoinflammation and recurrent bacterial infections.
View Article and Find Full Text PDFIRF-7 mediates robust production of type I IFN via MyD88 of the TLR9 pathway in plasmacytoid dendritic cells (pDCs). Previous studies using bone marrow-derived dendritic cells lacking either or have demonstrated that only IRF-3 is required for IFN-β production in the TLR4 pathway. Here, we show that IRF-7 is essential for both type I IFN induction and IL-1β responses via TLR4 in mice.
View Article and Find Full Text PDFBackground Aims: The immunomodulatory property of mesenchymal stromal cell (MSC) exosomes is well documented. On the basis of our previous report that MSC exosomes increased regulatory T-cell (Treg) production in mice with allogenic skin graft but not in ungrafted mice, we hypothesize that an activated immune system is key to exosome-mediated Treg production.
Methods: To test our hypothesis, MSC exosomes were incubated with mouse spleen CD4 T cells that were activated with either anti-CD3/CD28 mAbs or allogenic antigen-presenting cell (APC)-enriched spleen CD11c cells to determine whether production of mouse CD4CD25 T cells or CD4CD25Foxp3 Tregs could be induced.
Optimal regulation of the innate immune receptor nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is essential for controlling bacterial infections and inflammatory disorders. Chronic NOD2 stimulation induces non-responsiveness to restimulation, termed NOD2-induced tolerance. Although the levels of the NOD2 adaptor, RIP2, are reported to regulate both acute and chronic NOD2 signalling, how RIP2 levels are modulated is unclear.
View Article and Find Full Text PDFA cytosolic role for the histone methyltransferase Ezh2 in regulating lymphocyte activation has been suggested, but the molecular mechanisms underpinning this extranuclear function have remained unclear. Here we found that Ezh2 regulated the integrin signaling and adhesion dynamics of neutrophils and dendritic cells (DCs). Ezh2 deficiency impaired the integrin-dependent transendothelial migration of innate leukocytes and restricted disease progression in an animal model of multiple sclerosis.
View Article and Find Full Text PDFChikungunya virus (CHIKV) is a mosquito-borne arthralgia arbovirus that is reemergent in sub-Saharan Africa and Southeast Asia. CHIKV infection has been shown to be self-limiting, but the molecular mechanisms of the innate immune response that control CHIKV replication remain undefined. Here, longitudinal transcriptional analyses of PBMCs from a cohort of CHIKV-infected patients revealed that type I IFNs controlled CHIKV infection via RSAD2 (which encodes viperin), an enigmatic multifunctional IFN-stimulated gene (ISG).
View Article and Find Full Text PDFTranscriptional elongation by RNA polymerase II (Pol II) is regulated by positive transcription elongation factor b (P-TEFb) in association with bromodomain-containing protein 4 (BRD4). We used genome-wide chromatin immunoprecipitation sequencing in primary human CD4+ T cells to reveal that BRD4 co-localizes with Ser-2-phosphorylated Pol II (Pol II Ser-2) at both enhancers and promoters of active genes. Disruption of bromodomain-histone acetylation interactions by JQ1, a small-molecule bromodomain inhibitor, resulted in decreased BRD4 binding, reduced Pol II Ser-2, and reduced expression of lineage-specific genes in primary human CD4+ T cells.
View Article and Find Full Text PDFChronic inflammation is increasingly recognized as a major contributor of human colorectal cancer (CRC). While gut microbiota can trigger inflammation in the intestinal tract, the precise signaling pathways through which host cells respond to inflammatory bacterial stimulation are unclear. Here, we show that gut microbiota enhances intestinal tumor load in the APC(Min/+) mouse model of CRC.
View Article and Find Full Text PDFInterferons (IFNs) were discovered more than half a century ago, and extensive research has since identified multifarious roles for type I IFN in human immune responses. Here, we review the functions of IFN-β in innate and adaptive immunity. We also discuss the activation and influence of IFN-β on myeloid cell types, including monocytes and dendritic cells, as well as address the effects of IFN-β on T cells and B cells.
View Article and Find Full Text PDFInfluenza A virus has caused a number of pandemics in past decades, including the recent H1N1-2009 pandemic. Viperin is an interferon (IFN)-inducible protein of innate immunity, and acts as a broad-spectrum antiviral protein. We explored the antiviral activities and mechanisms of viperin during influenza virus (IFV) infection in vitro and in vivo.
View Article and Find Full Text PDFRobust and rapid induction of interferon-β (IFN-β) in monocytes after pathogenic stimulation is a hallmark of innate immune responses. Here, we reveal the molecular mechanism underlying this key property that is exclusive to human blood monocytes. We found that IFN-β was produced rapidly in primary human monocytes as a result of cooperation between the myeloid-specific transcription factor IRF8 and the ubiquitous transcription factor IRF3.
View Article and Find Full Text PDFViperin (virus inhibitory protein, endoplasmic reticulum [ER]-associated, interferon-inducible) has been identified as a highly inducible ER protein that has antiviral activity. Here, we characterized the phenotype of mice deficient in viperin and examined the biological function of viperin in peripheral T-cell activation and differentiation. Splenic CD4(+) T cells deficient in viperin exhibited normal anti-T-cell receptor (TCR)-induced proliferation and IL-2 production, but produced significantly less T helper 2 (Th2) cytokines, including IL-4, IL-5, and IL-13, in association with impaired GATA3 activation, after stimulation with anti-CD3 antibody, which was not restored upon costimulation with anti-CD28.
View Article and Find Full Text PDFBackground: Despite the seriousness of dengue-related disease, with an estimated 50-100 million cases of dengue fever and 250,000-500,000 cases of dengue hemorrhagic fever/dengue shock syndrome each year, a clear understanding of dengue pathogenesis remains elusive. Because of the lack of a disease model in animals and the complex immune interaction in dengue infection, the study of host response and immunopathogenesis is difficult. The development of genomics technology, microarray and high throughput quantitative PCR have allowed researchers to study gene expression changes on a much broader scale.
View Article and Find Full Text PDFNF-kappaB is a key mediator of inflammation. Here, we mapped the genome-wide loci bound by the RELA subunit of NF-kappaB in lipopolysaccharide (LPS)-stimulated human monocytic cells, and together with global gene expression profiling, found an overrepresentation of the E2F1-binding motif among RELA-bound loci associated with NF-kappaB target genes. Knockdown of endogenous E2F1 impaired the LPS inducibility of the proinflammatory cytokines CCL3(MIP-1alpha), IL23A(p19), TNF-alpha, and IL1-beta.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2007
Tight regulation of p53 is essential for maintaining normal cell growth. Here we report that BLIMP1 acts in an autoregulatory feedback loop that controls p53 activity through repression of p53 transcription. p53 binds to and positively regulates BLIMP1, which encodes for a known B cell transcriptional repressor.
View Article and Find Full Text PDFTLR3 functions as a viral nucleic acid sentinel activated by dsRNA viruses and virus replication intermediates within intracellular vesicles. To explore the spectrum of genes induced in human astrocytes by TLR3, we used a microarray approach and the analog polyriboinosinic polyribocytidylic acid (pIC) as ligand. As expected for TLR activation, pIC induced a wide array of cytokines and chemokines known for their role in inflammatory responses, as well as up-regulation of the receptor itself.
View Article and Find Full Text PDFType I IFNs induce the expression of IFN-stimulated gene 15 (ISG15) and its conjugation to cellular targets. ISGylation is a multistep process involving IFN-inducible Ube1L, UbcH8, and a yet-to-be identified E3 ligase. Here we report the identification of an IFN-induced HECT-type E3 protein ligase, HERC5/Ceb1, which mediates ISGylation.
View Article and Find Full Text PDF