Publications by authors named "Keh Chien Lee"

Plants, as sessile organisms, show a high degree of plasticity in their growth and development and have various strategies to cope with these alterations under continuously changing environments and unfavorable stress conditions. In particular, the floral transition from the vegetative and reproductive phases in the shoot apical meristem (SAM) is one of the most important developmental changes in plants. In addition, meristem regions, such as the SAM and root apical meristem (RAM), which continually generate new lateral organs throughout the plant life cycle, are important sites for developmental plasticity.

View Article and Find Full Text PDF

We investigated the transcriptomic changes in the shoot apices during floral transition in mutants of two closely related splicing factors: AtU2AF65a () and AtU2AF65b (). The mutants exhibited delayed flowering, while the mutants showed accelerated flowering. The underlying gene regulatory mechanism of these phenotypes was unclear.

View Article and Find Full Text PDF

In temperate and boreal regions, perennials adapt their annual growth cycle to the change of seasons. These adaptations ensure survival in harsh environmental conditions, allowing growth at different latitudes and altitudes, and are therefore tightly regulated. Populus tree species cease growth and form terminal buds in autumn when photoperiod falls below a certain threshold.

View Article and Find Full Text PDF

The AtSF1-FLM module spatially controls temperature-dependent flowering by negatively regulating the expression of FT and LFY in the leaf and shoot apex, respectively. Alternative splicing mediated by various splicing factors is important for the regulation of plant growth and development. Our recent reports have shown that a temperature-dependent interaction between Arabidopsis thaliana splicing factor 1 (AtSF1) and FLOWERING LOCUS M (FLM) pre-mRNA introns controls the differential production of FLM-β transcripts at different temperatures, eventually resulting in temperature-responsive flowering.

View Article and Find Full Text PDF

is an important regulator of in the thermosensory pathway of Arabidopsis. It is a negative regulator of flowering and represses transcription. In poplar trees, is central for the photoperiodic control of growth cessation, which also requires the decrease of bioactive gibberellins (GAs).

View Article and Find Full Text PDF

Small changes in temperature affect plant ecological and physiological factors that impact agricultural production. Hence, understanding how temperature affects flowering is crucial for decreasing the effects of climate change on crop yields. Recent reports have shown that β, the major spliced isoform of ()-a flowering time gene, contributes to temperature-responsive flowering in .

View Article and Find Full Text PDF

The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms. These proteins also move rapidly and continuously in the nuclei, and their movements are affected by ATP depletion. The U2AF65 proteins are splicing factors that interact with SF1 and U2AF35 proteins to promote U2snRNP for the recognition of the pre-mRNA 3' splice site during early spliceosome assembly.

View Article and Find Full Text PDF

The RNA recognition motif of Arabidopsis splicing factor SF1 affects the alternative splicing of FLOWERING LOCUS M pre-mRNA and a heat shock transcription factor HsfA2 pre-mRNA. Splicing factor 1 (SF1) plays a crucial role in 3' splice site recognition by binding directly to the intron branch point. Although plant SF1 proteins possess an RNA recognition motif (RRM) domain that is absent in its fungal and metazoan counterparts, the role of the RRM domain in SF1 function has not been characterized.

View Article and Find Full Text PDF

Rice Os NF - YB and Os NF - YC complement the late flowering phenotype of Arabidopsis nf - yb double and nf - yc triple mutants, respectively. In addition, OsNF-YB and OsNF-YC interact with AtNF-YC and AtNF-YB, respectively. Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress.

View Article and Find Full Text PDF

OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response through the modulation of three flowering-time genes ( Ehd1, Hd3a , and RFT1 ) in rice. Plant NUCLEAR FACTOR Y (NF-Y) transcription factors control numerous developmental processes by forming heterotrimeric complexes, but little is known about their roles in flowering in rice. In this study, it is shown that some subunits of OsNF-YB and OsNF-YC interact with each other, and among them, OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response of rice.

View Article and Find Full Text PDF

During initial spliceosome assembly, SF1 binds to intron branch points and interacts with U2 snRNP auxiliary factor 65 (U2AF65). Here, we present evidence indicating that AtSF1, the Arabidopsis SF1 homolog, interacts with AtU2AF65a and AtU2AF65b, the Arabidopsis U2AF65 homologs. A mutant allele of AtSF1 (At5g51300) that contains a T-DNA insertion conferred pleiotropic developmental defects, including early flowering and abnormal sensitivity to abscisic acid.

View Article and Find Full Text PDF