Additive manufacturing (AM) is a revolutionary technology that heralds a new era in metal processing, yet the quality of AM-produced parts is inevitably compromised by cracking induced by severe residual stress. In this study, a novel approach is presented to inhibit cracks and enhance the mechanical performances of AM-produced alloys by manipulating stacking fault energy (SFE). A high-entropy alloy (HEA) based on an equimolar FeCoCrNi composition is selected as the prototype material due to the presence of microcracks during laser powder bed fusion (LPBF) AM process.
View Article and Find Full Text PDFDespite the extremely high hardness of recently proposed high-entropy carbides (HECs), the low fracture toughness limits their applications in harsh mechanical environment. Here, we introduce a metastability engineering strategy to achieve superhard HECs with enhanced toughness via in-situ metastable particles. This is realized by developing a (WTaNbZrTi)C HEC showing a solid solution matrix with uniformly dispersed in-situ tetragonal and monoclinic ZrO particles.
View Article and Find Full Text PDF