Publications by authors named "Kefan Ren"

Recent studies have reported the occurrence of liquid crystal monomers (LCMs) in sediment, indoor dust, hand wipes, and human serum samples; however, information regarding their contamination status in soil is currently unavailable. The concentrations of 39 target LCMs were determined in n = 96 surface soil samples collected from five different urban functional zones including agricultural, scenic, industrial, commercial, and residential zones. We observed that 76 of 96 surface soil samples contained at least 19, 13, 16, 19, and 14 of the 39 target LCMs that were detectable in samples from agricultural, scenic, industrial, commercial, and residential zones, respectively.

View Article and Find Full Text PDF

Ninety-five soil samples (n = 95) were analyzed using an integrated suspect and non-target organophosphate ester (OPE) screening strategy. This suspect and non-target screening strategy allowed us to fully or tentatively identify 26 OPEs or OPE-like substances. Among these 26 newly identified contaminants, bisphenol A bis(diphenylphosphate) (BPABDP) exhibited the highest detection frequency of 83.

View Article and Find Full Text PDF

Recent studies have suggested that liquid crystal monomers (LCMs) are emerging contaminants in the environment, and knowledge of this class of substances is very rare. Here, we reviewed existing LCM-related documents, i.e.

View Article and Find Full Text PDF

Nitroaromatic compounds (NACs) are high of concern due to their mutagenicity, and carcinogenicity to organisms. Here, we attempted to establish a novel searching-validation-evaluation workflow that is tailored to recognize unknown NACs in environmental samples using liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry (LC-Orbitrap-HRMS). We studied the fragmentation process of NAC standards in Orbitrap higher-energy collision dissociation (HCD) cells and observed that the mass loss of NO was the most prevalent among all NAC standards at both low and medium levels of collision energy.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons derivatives (dPAHs) were reported to be more mutagenic than parent analogues, however, studies that involving dPAHs in environmental samples are still limited. Thirty-six polycyclic aromatic compounds (PACs; 17 parent PAHs, 1 alkyl-PAH, 6 oxygenated PAHs, 6 azaarenes, 3 sulfur-containing heterocyclic PAHs, and 3 oxygen-containing heterocyclic PAHs) were analyzed in n = 100 surface soil samples collected from a prefecture-level city (hereafter referred to as D city) in South China, in the year 2019. Total concentrations of 36 PACs ranged from 3.

View Article and Find Full Text PDF

The organophosphate ester (OPE), bis-(2-ethylhexyl)-phenyl phosphate (BEHPP), was recently identified as an abundant contaminant in indoor dust samples; however, its pollution status in other matrices remains unknown. Here, n = 95 surface soil samples were collected from a prefecture-level city (hereafter referred to as D city) in South China during 2019, and further analyzed to accurately determine the concentrations of BEHPP and eight other OPEs, including tris(2-chloroethyl) phosphate (TCEP), tris(1,3-dichloro-isopropyl) phosphate (TDCIPP), triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphatetris (TBOEP), 2-ethylhexyl diphenyl phosphate (EHDPP), tris(2-ethylhexyl) phosphate (TEHP), 4-biphenylol diphenyl phosphate (BPDPP), and tris(2-biphenyl) phosphate (TBPHP). BEHPP was detected in all six functional areas (agricultural, scenic, commercial, industrial, and residential areas) of this region, and exhibited a high detection frequency of 67.

View Article and Find Full Text PDF