Publications by authors named "Keesoo Nam"

Brain type of creatine kinase (CKB) regulates energy homeostasis by reversibly transferring phosphate groups between phosphocreatine and ATP at sites of high energy demand. Several types of cancer cells exhibit upregulated CKB expression, but the function of CKB in cancer cells remains unclear. In this study, we investigated the function of CKB in breast cancer by overexpressing CKB in MDA-MB-231 cells.

View Article and Find Full Text PDF

Phthalates are mainly used as binders and plasticizers in various industrial products including detergents, surfactants, waxes, paints, pharmaceuticals, food products, and cosmetics. However, they have been reported to be endocrine disruptors, which are chemicals that can mimic or disturb endocrines, causing interference to the endocrine system. Recently, there have been numerous reports showing that phthalates have negative health impacts such as asthma, breast cancer, obesity, type II diabetes, and male infertility.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles, due to their smaller size and increased surface area comparted to the bulk form, are known to be bioreactive and have unexpected toxicological outcomes. Previous studies have shown that nanoscale titanium dioxide induces reactive oxygen species (ROS)-mediated cytotoxicity and genotoxicity. Although many reports have discussed the ROS-mediated cytotoxic effects of titanium dioxide nanoparticles (TiO2-NPs), their effects on the receptor-ligand association are unknown.

View Article and Find Full Text PDF

Bisphenol-A (BPA) was first synthesized in the 1890s and has been used in many plastic products. However, BPA is known to act as an endocrine disruptor and has been found to be toxic to human health. Many alternative substances have been developed to replace BPA, but it is still widely used worldwide.

View Article and Find Full Text PDF

Egr-1 is known to function mainly as a tumor suppressor through direct regulation of multiple tumor suppressor genes. To determine the role of Egr-1 in breast tumors in vivo, we used mouse models of breast cancer induced by HER2/neu. We compared neu-overexpressing Egr-1 knockout mice (neu/Egr-1 KO) to neu-overexpressing Egr-1 wild type or heterozygote mice (neu/Egr-1 WT or neu/Egr-1 het) with regard to onset of tumor appearance and number of tumors per mouse.

View Article and Find Full Text PDF

Background/aim: Silica nanoparticles (nano-SiO) are widely used in many industrial areas and there is much controversy surrounding cytotoxic effects of such nanoparticles. In order to determine the toxicity and possible molecular mechanisms involved, we conducted several tests with two breast cancer cell lines, MDA-MB-231 and Hs578T.

Materials And Methods: After exposure to nano-SiO, growth, apoptosis, motility of breast cancer cells were monitored.

View Article and Find Full Text PDF

Cancer cells require increased aerobic glycolysis to support rapid cell proliferation. For their increased energy demands, cancer cells express glucose transporter (Glut) proteins at a high level. Glut1 is associated with basal-like breast cancer and is considered a potential therapeutic target.

View Article and Find Full Text PDF

Galectin-1 is a β-galactoside binding protein secreted by many types of aggressive cancer cells. Although many studies have focused on the role of galectin-1 in cancer progression, relatively little attention has been paid to galectin-1 as an extracellular therapeutic target. To elucidate the molecular mechanisms underlying galectin-1-mediated cancer progression, we established galectin-1 knock-down cells via retroviral delivery of short hairpin RNA (shRNA) against galectin-1 in two triple-negative breast cancer (TNBC) cell lines, MDA-MB-231 and Hs578T.

View Article and Find Full Text PDF

Elevated glucose levels in cancer cells can be attributed to increased levels of glucose transporter (GLUT) proteins. Glut1 expression is increased in human malignant cells. To investigate alternative roles of Glut1 in breast cancer, we silenced Glut1 in triple-negative breast-cancer cell lines using a short hairpin RNA (shRNA) system.

View Article and Find Full Text PDF

Cluster of differentiation 44 (CD44) is a transmembrane glycoprotein that has been identified as a cancer stem cell marker in various cancer cells. Although many studies have focused on CD44 as a cancer stem cell marker, its effect on cancer cell metabolism remains unclear. To investigate the role of CD44 on cancer cell metabolism, we established CD44 knock-down cells via retroviral delivery of shRNA against CD44 in human breast cancer cells.

View Article and Find Full Text PDF

CD44 was recently identified as a cancer initiation marker on the cell membrane. The cytoplasmic tail of CD44 is known to bind ERM (ezrin, radixin, moesin) proteins, cytoskeletal proteins like ankyrin, and the non-receptor tyrosine kinase c-Src. CD44 transmits its oncogenic signaling via c-Src and its downstream effectors.

View Article and Find Full Text PDF

Members of the EGFR family are potent mediators of normal cell growth and development. HER2 possesses an active tyrosine kinase domain, but no direct ligand has been identified. To investigate the differential effect of HER2 in breast cell lines, HER2 was overexpressed in MCF-10A, MCF7 and MDA-MB-231 cells.

View Article and Find Full Text PDF

Introduction: Extracellular matrix protein 1 (ECM1) is a secreted glycoprotein with putative functions in cell proliferation, angiogenesis and differentiation. Expression of ECM1 in several types of carcinoma suggests that it may promote tumor development. In this study, we investigated the role of ECM1 in oncogenic cell signaling in breast cancer, and potential mechanisms for its effects.

View Article and Find Full Text PDF

The Warburg effect is an oncogenic metabolic switch that allows cancer cells to take up more glucose than normal cells and favors anaerobic glycolysis. Extracellular matrix protein 1 (ECM1) is a secreted glycoprotein that is overexpressed in various types of carcinoma. Using two-dimensional digest-liquid chromatography-mass spectrometry (LC-MS)/MS, we showed that the expression of proteins associated with the Warburg effect was upregulated in trastuzumab-resistant BT-474 cells that overexpressed ECM1 compared to control cells.

View Article and Find Full Text PDF

S100A4, also known as the mts1 gene, has been reported as an invasive and metastatic marker for many types of cancers. S100A4 interacts with various target genes that affect tumor cell metastasis; however, little is known about cellular signaling pathways elicited by S100A4. In the current study, we demonstrate an inhibitory effect of S100A4 on β-catenin signaling in breast cancer cells.

View Article and Find Full Text PDF

Purpose: Keratin19 (KRT19) is the smallest known type I intermediate filament and is used as a marker for reverse transcriptase PCR-mediated detection of disseminated tumors. In this study, we investigated the functional analysis of KRT19 in human breast cancer.

Experimental Design: Using a short hairpin RNA system, we silenced KRT19 in breast cancer cells.

View Article and Find Full Text PDF

In breast cancer, the HER2 (human epidermal growth factor receptor 2) receptor tyrosine kinase is associated with extremely poor prognosis and survival. Notch signalling has a key role in cell-fate decisions, especially in cancer-initiating cells. The Notch intracellular domain produced by Notch cleavage is translocated to the nucleus where it activates transcription of target genes.

View Article and Find Full Text PDF

Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process.

View Article and Find Full Text PDF