Avian infectious bronchitis is an acute respiratory disease of poultry of particular concern for global food security. Investigation of infectious bronchitis virus (IBV), the causative agent of avian infectious bronchitis, via reverse genetics enables deeper understanding of virus biology and a rapid response to emerging variants. Classic methods of reverse genetics for IBV can be time consuming, rely on recombination for the introduction of mutations, and, depending on the system, can be subject to genome instability and unreliable success rates.
View Article and Find Full Text PDFThe avian Gammacoronavirus infectious bronchitis virus (IBV) causes major economic losses in the poultry industry as the aetiological agent of infectious bronchitis, a highly contagious respiratory disease in chickens. IBV causes major economic losses to poultry industries across the globe and is a concern for global food security. IBV vaccines are currently produced by serial passage, typically 80 to 100 times in chicken embryonated eggs (CEE) to achieve attenuation by unknown molecular mechanisms.
View Article and Find Full Text PDFThe avian coronavirus, infectious bronchitis virus (IBV), is an economically important infectious disease affecting chickens, with a diverse range of serotypes found globally. The major surface protein, spike (S), has high diversity between serotypes, and amino acid differences in the S1 sub-unit are thought to be responsible for poor cross-protection afforded by vaccination. Here, we attempt to address this, by using epitope mapping technology to identify shared and serotype-specific immunogenic epitopes of the S glycoprotein of three major circulating strains of IBV, M41, QX, and 4/91, via CLIPS peptide arrays based on peptides from the S1 sub-units.
View Article and Find Full Text PDFCoronaviruses infect a wide variety of host species, resulting in a range of diseases in both humans and animals. The coronavirus genome consists of a large positive-sense single-stranded molecule of RNA containing many RNA structures. One structure, denoted s2m and consisting of 41 nucleotides, is located within the 3' untranslated region (3' UTR) and is shared between some coronavirus species, including infectious bronchitis virus (IBV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, as well as other pathogens, including human astrovirus.
View Article and Find Full Text PDFThe envelope (E) protein of the avian coronavirus infectious bronchitis virus (IBV) is a small-membrane protein present in two forms during infection: a monomer and a pentameric ion channel. Each form has an independent role during replication; the monomer disrupts the secretory pathway, and the pentamer facilitates virion production. The presence of a T16A or A26F mutation within E exclusively generates the pentameric or monomeric form, respectively.
View Article and Find Full Text PDFAvian coronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute highly contagious economically relevant respiratory disease of poultry. Vaccination is used to control IBV infections, with live-attenuated vaccines generated via serial passage of a virulent field isolate through embryonated hens' eggs. A fine balance must be achieved between attenuation and the retention of immunogenicity.
View Article and Find Full Text PDFIn the light of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, we have developed a porcine respiratory coronavirus (PRCV) model for in depth mechanistic evaluation of the pathogenesis, virology and immune responses of this important family of viruses. Pigs are a large animal with similar physiology and immunology to humans and are a natural host for PRCV. Four PRCV strains were investigated and shown to induce different degrees of lung pathology.
View Article and Find Full Text PDFThis article aims to review all currently known interactions between animal and human coronaviruses and their cellular receptors. Over the past 20 years, three novel coronaviruses have emerged that have caused severe disease in humans, including SARS-CoV-2 (severe acute respiratory syndrome virus 2); therefore, a deeper understanding of coronavirus host-cell interactions is essential. Receptor-binding is the first stage in coronavirus entry prior to replication and can be altered by minor changes within the spike protein-the coronavirus surface glycoprotein responsible for the recognition of cell-surface receptors.
View Article and Find Full Text PDFThe infectious bronchitis virus (IBV) is a highly contagious global pathogen prevalent in all types of poultry flocks. IBV is responsible for economic losses and welfare issues in domestic poultry, resulting in a significant risk to food security. IBV vaccines are currently generated by serial passage of virulent IBV field isolates through embryonated hens' eggs.
View Article and Find Full Text PDFJ Wound Ostomy Continence Nurs
September 2021
Purpose: The purpose of this study was to explore neonatal nursing practices for neonatal pressure injury (PI) risk assessment, pressure redistribution surface use, and moisture management.
Design: A descriptive survey.
Subject/settings: A sample of 252 neonatal nurses mainly from the United States responded to a survey distributed electronically through the National Association of Neonatal Nurses, the Academy of Neonatal Nurses, and on the Wound Source Web site.
Infectious bronchitis virus (IBV) is an economically important coronavirus, causing damaging losses to the poultry industry worldwide as the causative agent of infectious bronchitis. The coronavirus spike (S) glycoprotein is a large type I membrane protein protruding from the surface of the virion, which facilitates attachment and entry into host cells. The IBV S protein is cleaved into two subunits, S1 and S2, the latter of which has been identified as a determinant of cellular tropism.
View Article and Find Full Text PDFCoronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs. We found the UPR to be amongst the most significantly up-regulated pathways in response to MHV infection.
View Article and Find Full Text PDFSmall vessel disease is a prevalent age-related condition linked to increased risk of dementia and stroke. We investigate the most commonly inherited form, CADASIL, caused by cysteine-involving mutations in NOTCH3. Recent studies highlight accumulation of NOTCH3 N-terminal fragmentation product (NTF) in disease.
View Article and Find Full Text PDFCerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and cerebral amyloid angiopathy (CAA) are two distinct vascular angiopathies that share several similarities in clinical presentation and vascular pathology. Given the clinical and pathologic overlap, the molecular overlap between CADASIL and CAA was explored. CADASIL and CAA protein profiles from recently published proteomics-based and immuno-based studies were compared to investigate the potential for shared disease mechanisms.
View Article and Find Full Text PDFMercy is a valued nursing attribute. It often identifies faith-based educational institutions, clinics, and hospitals and has been a quality valued and taught by the Catholic Sisters of Mercy through nursing's history. This qualitative study explored the meaning of mercy as expressed by undergraduate nursing students attending a faith-based nursing school.
View Article and Find Full Text PDFProtein sulfhydryl residues participate in key structural and biochemical functions. Alterations in sulfhydryl status, regulated by either reversible redox reactions or by permanent covalent capping, may be challenging to identify. To advance the detection of protein sulfhydryl groups, we describe the production of new Rabbit monoclonal antibodies that react with carbamidomethyl-cysteine (CAM-cys), a product of iodoacetamide (IAM) labeling of protein sulfhydryl residues.
View Article and Find Full Text PDFThe infectious bronchitis virus (IBV) causes a highly contagious and economically important respiratory disease in poultry. In the laboratory, most IBV strains are restricted to replication in ex vivo organ cultures or in ovo and do not replicate in cell culture, making the study of their basic virology difficult. Entry of IBV into cells is facilitated by the large glycoprotein on the surface of the virion, the spike (S) protein, comprised of S1 and S2 subunits.
View Article and Find Full Text PDFWe have developed a reverse genetics system for the avian coronavirus infectious bronchitis virus (IBV) in which a full-length cDNA corresponding to the IBV genome is inserted into the vaccinia virus genome under the control of a T7 promoter sequence. Vaccinia virus as a vector for the full-length IBV cDNA has the advantage that modifications can be introduced into the IBV cDNA using homologous recombination, a method frequently used to insert and delete sequences from the vaccinia virus genome. Here, we describe the use of transient dominant selection as a method for introducing modifications into the IBV cDNA that has been successfully used for the substitution of specific nucleotides, deletion of genomic regions, and the exchange of complete genes.
View Article and Find Full Text PDFThe coronaviruses are a large family of enveloped RNA viruses that commonly cause gastrointestinal or respiratory illnesses in the infected host. Avian coronavirus infectious bronchitis virus (IBV) is a highly contagious respiratory pathogen of chickens that can affect the kidneys and reproductive systems resulting in bird mortality and decreased reproductivity. The interferon-inducible transmembrane (IFITM) proteins are activated in response to viral infections and represent a class of cellular restriction factors that restrict the replication of many viral pathogens.
View Article and Find Full Text PDFCoronavirus sub-genomic mRNA (sgmRNA) synthesis occurs via a process of discontinuous transcription involving complementary transcription regulatory sequences (TRSs), one (TRS-L) encompassing the leader sequence of the 5' untranslated region (UTR), and the other upstream of each structural and accessory gene (TRS-B). Several coronaviruses have an ORF located between the N gene and the 3'-UTR, an area previously thought to be non-coding in the infectious bronchitis virus (IBV) due to a lack of a canonical TRS-B. Here, we identify a non-canonical TRS-B allowing for a novel sgmRNA relating to this ORF to be produced in several strains of IBV: Beaudette, CR88, H120, D1466, Italy-02 and QX.
View Article and Find Full Text PDFThe infectious bronchitis virus (IBV) is a highly contagious economically important respiratory pathogen of domestic fowl. Reverse genetics allows for the molecular study of pathogenic determinants to enable rational vaccine design. The recombinant IBV (rIBV) Beau-R, a molecular clone of the apathogenic Beaudette strain, has previously been investigated as a vaccine platform.
View Article and Find Full Text PDFinfectious bronchitis virus (IBV) causes an economically important respiratory disease of poultry. Protective immunity is associated with the major structural protein, spike (S) glycoprotein, which induces neutralising antibodies and defines the serotype. Cross-protective immunity between serotypes is limited and can be difficult to predict.
View Article and Find Full Text PDFA large number of pre-clinical and developmental investigations involve experimental vertebrate animals, of which mice have emerged as a favored organism. Recognition of the differences between humans and mice is essential for assessment of the relevance of animal studies to humans. The primary purpose of this study was to gauge the conservation between human and mouse vascular smooth muscle cell (VSMC) proteins mined from an analysis of the Human Protein Atlas.
View Article and Find Full Text PDFThe small-vessel disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) arises from mutations in the human gene encoding NOTCH3 and results in vascular smooth muscle cell degeneration, stroke, and dementia. However, the structural changes in NOTCH3 involved in CADASIL etiology are unclear. Here, we discovered site-specific fragmentation of NOTCH3 protein in pathologically affected vessels of human CADASIL-affected brains.
View Article and Find Full Text PDF