Publications by authors named "Keenan Noyes"

Causal mechanistic reasoning is a thinking strategy that can help students explain complex phenomena using core ideas commonly emphasized in separate undergraduate courses, as it requires students to identify underlying entities, unpack their relevant properties and interactions, and link them to construct mechanistic explanations. As a crossdisciplinary group of biologists, chemists, and teacher educators, we designed a scaffolded set of tasks that require content knowledge from biology and chemistry to construct nested hierarchical mechanistic explanations that span three scales (molecular, macromolecular, and cellular). We examined student explanations across seven introductory and upper-level biology and chemistry courses to determine how the construction of mechanistic explanations varied across courses and the relationship between the construction of mechanistic explanations at different scales.

View Article and Find Full Text PDF

In undergraduate life sciences education, open educational resources (OERs) increase accessibility and retention for students, reduce costs, and save instructors time and effort. Despite increasing awareness and utilization of these resources, OERs are not centrally located, and many undergraduate instructors describe challenges in locating relevant materials for use in their classes. To address this challenge, we have designed a resource collection (referred to as Open Resources for Biology Education, ORBE) with 89 unique resources that are primarily relevant to undergraduate life sciences education.

View Article and Find Full Text PDF

Concerns regarding students' difficulties with the concept of energy date back to the 1970s. They become particularly apparent for systems involving adenosine triphosphate (ATP), which plays a central role in maintaining the nonequilibrium state of biological systems and in driving energetically unfavorable processes. One of the most well-documented misconceptions related to ATP is the idea that breaking bonds releases energy, when the opposite is true.

View Article and Find Full Text PDF

We used molecular dynamics (MD) simulations for structure refinement of Critical Assessment of Techniques for Protein Structure Prediction 10 (CASP10) targets. Refinement was achieved by selecting structures from the MD-based ensembles followed by structural averaging. The overall performance of this method in CASP10 is described, and specific aspects are analyzed in detail to provide insight into key components.

View Article and Find Full Text PDF