Publications by authors named "Keehoon Kim"

This paper introduces the 'Spatially Focused Saline-based Pressure Sensor (SF-SaPS)', a novel soft microfluidic pressure sensor featuring a distinctive three-dimensional focusing structure. By critically reducing the cross-sectional area of the microchannel at the focused structure, the SF-SaPS achieves excellent sensitivity to pressure within the sensing region. With the spatially focused region, the SF-SaPS could detect a wide range of pressure from gentle touches to human weight, which is typically unachievable with low-conductivity sensing media such as saline, a medium inherently safe for human use.

View Article and Find Full Text PDF

Virtual exhibits with haptic feedback offer greater flexibility in diversifying content and providing digital affordance, even at a lower cost, than physical exhibits. However, few studies addressed the value of such haptics-enabled educational systems in informal learning environments. In this study, we investigated the feasibility of a haptic exhibit as an alternative or supplement for a traditional physical exhibit in a science museum.

View Article and Find Full Text PDF

Background: Most partial hand amputees experience limited wrist movement. The limited rotational wrist movement deteriorates natural upper limb system related to hand use and the usability of the prosthetic hand, which may cause secondary damage to the musculoskeletal system due to overuse of the upper limb affected by repetitive compensatory movement patterns. Nevertheless, partial hand prosthetics, in common, have only been proposed without rotational wrist movement because patients have various hand shapes, and a prosthetic hand should be attached to a narrow space.

View Article and Find Full Text PDF

Haptic interactions play an essential role in education to enhance learning efficiency; however, haptic information for virtual educational content remains lacking. This article proposes a planar cable-driven haptic interface with movable bases that can display isotropic force feedback with maximum workspace extension on a commercial screen display. A generalized kinematic and static analysis of the cable-driven mechanism is derived by considering movable pulleys.

View Article and Find Full Text PDF

Surface electromyography (sEMG) patterns have been decoded using learning-based methods that determine complicated nonlinear decision boundaries. However, overlapping classes in sEMG pattern recognition still degrade the classification accuracy because they cannot be separated by the decision boundaries. We hypothesized that certain overlapping classes can be separated while tracing the temporal history of sEMG patterns.

View Article and Find Full Text PDF

Drug-induced cardiotoxicity is regarded as a major hurdle in the early stages of drug development. Although there are various methods for preclinical cardiotoxicity tests, they cannot completely predict the cardiotoxic potential of a compound due to the lack of physiological relevance. Recently, 3D engineered heart tissue (EHT) has been used to investigate cardiac muscle functions as well as pharmacological effects by exhibiting physiological auxotonic contractions.

View Article and Find Full Text PDF

The 15 January 2022 climactic eruption of Hunga volcano, Tonga, produced an explosion in the atmosphere of a size that has not been documented in the modern geophysical record. The event generated a broad range of atmospheric waves observed globally by various ground-based and spaceborne instrumentation networks. Most prominent was the surface-guided Lamb wave (≲0.

View Article and Find Full Text PDF

Background: Adaptation in proximal muscles for daily motor tasks after sustained use of a prosthetic hand has not been fully understood.

Objectives: This study aimed to investigate changes in hand functions and activities of proximal muscles after multiple weeks of using a myoelectric prosthetic hand at home.

Study Design: Repeated measures.

View Article and Find Full Text PDF

Force control abilities are essential to interact with objects in our environments. However, there is a lack of evaluation tools and methods to test the force control abilities of the upper limb in evaluating the upper limb functions of prosthetic users. This study aimed to quantify upper limb isometric force control abilities in healthy individuals and prosthetic users using a custom-built handle with a 6-axis force/torque sensor and visual cue, namely an Upper Limb End-effector type Force control test device (ULEF).

View Article and Find Full Text PDF

In vivo volumetric imaging of the microstructural changes of peripheral nerves with an inserted electrode could be key for solving the chronic implantation failure of an intra-neural interface necessary to provide amputated patients with natural motion and sensation. Thus far, no imaging devices can provide a cellular-level three-dimensional (3D) structural images of a peripheral nerve in vivo. In this study, an optical coherence tomography-based peripheral nerve imaging platform that employs a newly proposed depth of focus extension technique is reported.

View Article and Find Full Text PDF

Purpose: To measure needle insertion force and change in intraocular pressure (IOP) in real-time during intravitreal injection (IVI). The effects of needle size, insertion speed, and injection rate to IOP change were investigated.

Methods: Needle insertion and fluid injection were performed on 90 porcine eyeballs using an automatic IVI device.

View Article and Find Full Text PDF

Transcutaneous spinal cord electrical stimulation (tSCS) is an emerging technology that targets to restore functionally integrated neuromuscular control of gait. The purpose of this study was to demonstrate a novel filtering method, Artifact Component Specific Rejection (ACSR), for removing artifacts induced by tSCS from surface electromyogram (sEMG) data for investigation of muscle response during walking when applying spinal stimulation. Both simulated and real tSCS contaminated sEMG data from six stroke survivors were processed using ACSR and notch filtering, respectively.

View Article and Find Full Text PDF

In penetrating keratoplasty (PKP), the proper corneal suture placement is very important for successful transplantation and restoring functional vision. Generating sutures with accurate depth is difficult for the surgeon because of the tissue's softness, lack of depth information, and hand tremors. In this paper, an automatic cornea grasping device is proposed, which detects when the device reaches the target suture depth.

View Article and Find Full Text PDF

Image-activated cell sorting is an essential biomedical research technique for understanding the unique characteristics of single cells. Deep learning algorithms can be used to extract hidden cell features from high-content image information to enable the discrimination of cell-to-cell differences in image-activated cell sorters. However, such systems are challenging to implement from a technical perspective due to the advanced imaging and sorting requirements and the long processing times of deep learning algorithms.

View Article and Find Full Text PDF

This paper presents a neurosurgical device called NEIT 2 (Nerve Electrode Insertion Tool) to implant a 3D microelectrode array into a peripheral nervous system. Using an elastomer-made nerve holder, the device is able to stable target a flexible nerve, and then safely inserts an electrode array into the fixed nerve. Finally, a nerve containment assembly is made at once.

View Article and Find Full Text PDF

A direct, ready-to-use surface electromyogram (sEMG) pattern classification algorithm that does not require prerequisite training, regardless of the user, is proposed herein. In addition to data collection, conventional supervised learning approaches for sEMG require labeling and segmenting the data and additional time for the learning algorithm. Consequently, these approaches cannot cope well with sEMG patterns during motion transitions of various movement speeds.

View Article and Find Full Text PDF

There is a considerable demand to develop robots that can perform sophisticated tasks such as grabbing delicate materials, passing through narrow pathways, and acting as mediators between humans and robots. Soft robots can provide a solution for such applications. In this study, we propose an electrohydraulic gripper, which is based on electrostatic and hydraulic forces.

View Article and Find Full Text PDF

Surface electromyography (sEMG) is widely used in various fields to analyze user intentions. Conventional sEMG-based classifications are electrode-dependent; thus, trained classifiers cannot be applied to other electrodes that have different parameters. This defect degrades the practicability of sEMG-based applications.

View Article and Find Full Text PDF

This paper presents a novel robotic finger prosthesis for partially amputated patients who have lost a thumb and index finger. The challenging issues were to design i) a three-degree-of-freedom (DOF) underactuated mechanism that mimics intact finger movements including motion profiles and self-adaptation for unknown constraints, ii) an attachment socket for everyday life that allows ease of donning and doffing, and comfortable wearability, and iii) a shape to pack the selected components including an actuator, linkages, and sensors into a limited space avoiding motion interference with other intact fingers and wrist. This paper reports our effort to solve the challenging issues.

View Article and Find Full Text PDF

While the acoustic waveform inversion method is increasingly used in geophysical acoustics to constrain source parameters, the inversion results are often provided without any uncertainty analysis. This study presents a probabilistic representation for acoustic waveform inversion and method to evaluate the inversion uncertainty using ground-truth data. probability distribution of source estimate is described by waveform misfit covariance and the variance of acoustic source model.

View Article and Find Full Text PDF

In performing neurosurgical operation on peripheral nervous system, the most important first step is to robustly hold the target nerve, since the nerve-holding stability and reliability significantly affect the result of surgical operation. However it is not straightforward to robustly hold peripheral nerve during the surgical operation, because the peripheral nerve is too flexible and slippery. In this study, we design a novel peripheral nerve-holder that can be used for the neurosurgical operation.

View Article and Find Full Text PDF

Surface electromyography (sEMG) measurements have demonstrated the potential to recognize complex hand motions. In addition, sEMG enables natural recognition without disturbing movements, and thus, can be used in various fields such as teleoperation, assistant robots, and prosthetic hands. However, sEMG signals highly depend on electrode placements due to the complex muscle structures.

View Article and Find Full Text PDF

The Fe and Co NMR spectra for BaSrCo(FeAl)O (BSCFAO) and BaSrCoFeO (BSCFO) were obtained in a zero magnetic field at a low temperature. We observed change in the enhancement effect of the NMR signals depending on the setting field, which was varied when applied along the b-axis and then turned off before the measurement was taken. The experimental results indicate that the magnetic structure changes from an alternating longitudinal cone to a transverse cone when the setting field is 250 mT.

View Article and Find Full Text PDF

Recently, recognizing a user's daily activity using a smartphone and wearable sensors has become a popular issue. However, in contrast with the ideal definition of an experiment, there could be numerous complex activities in real life with respect to its various background and contexts: time, space, age, culture, and so on. Recognizing these complex activities with limited low-power sensors, considering the power and memory constraints of the wearable environment and the user's obtrusiveness at once is not an easy problem, although it is very crucial for the activity recognizer to be practically useful.

View Article and Find Full Text PDF

This paper proposes a compact handheld device for magnetically inserting a neural interface into a peripheral nervous system (PNS). Users can pull and hold a flexible peripheral nerve (e.g.

View Article and Find Full Text PDF