Introduction: Sugarcane workers are exposed to potentially hazardous agrochemicals, including pesticides, heavy metals, and silica. Such occupational exposures present health risks and have been implicated in a high rate of kidney disease seen in these workers.
Methods: To investigate potential biomarkers and mechanisms that could explain chronic kidney disease (CKD) among this worker population, paired urine samples were collected from sugarcane cutters at the beginning and end of a harvest season in Guatemala.
Silica nanoparticles found in sugarcane ash have been postulated to be a toxicant contributing to chronic kidney disease of unknown etiology (CKDu). However, while the administration of manufactured silica nanoparticles is known to cause chronic tubulointerstitial disease in rats, the effect of administering sugarcane ash on kidney pathology remains unknown. Here we investigate whether sugarcane ash can induce CKD in rats.
View Article and Find Full Text PDFMultiple epidemics of chronic kidney disease of an unknown etiology (CKDu) have emerged in agricultural communities around the world. Many factors have been posited as potential contributors, but a primary cause has yet to be identified and the disease is considered likely multifactorial. Sugarcane workers are largely impacted by disease leading to the hypothesis that exposure to sugarcane ash produced during the burning and harvest of sugarcane could contribute to CKDu.
View Article and Find Full Text PDFAs the world braces to enter its fourth year of the coronavirus disease 2019 (COVID-19) pandemic, the need for accessible and effective antiviral therapeutics continues to be felt globally. The recent surge of Omicron variant cases has demonstrated that vaccination and prevention alone cannot quell the spread of highly transmissible variants. A safe and nontoxic therapeutic with an adaptable design to respond to the emergence of new variants is critical for transitioning to the treatment of COVID-19 as an endemic disease.
View Article and Find Full Text PDFThe devastating effects of the coronavirus disease 2019 (COVID-19) pandemic have made clear a global necessity for antiviral strategies. Most fatalities associated with infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) result at least partially from uncontrolled host immune response. Here, we use an antisense compound targeting a previously identified microRNA (miRNA) linked to severe cases of COVID-19.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
July 2022
Engineered nanomaterials are becoming increasingly ubiquitous in our society, with numerous applications in medicine, consumer products, bioremediation, and advanced materials. As these nanomaterials increase in variety, analyzing their characteristics is of great importance. Single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) is a high-throughput, sensitive, and robust instrumental analysis method used to simultaneously characterize and quantify nanoparticles in a variety of matrices.
View Article and Find Full Text PDFThe increased use of amorphous silica nanoparticles (SiNPs) in food products, materials science, cosmetics, and pharmaceuticals has raised questions about potential hazards in the environment and in human health. Although SiNPs are generally thought to be benign, recent studies have demonstrated toxicity in different cell and animal models. Despite their ubiquitous use, SiNPs are rarely analyzed quantitatively.
View Article and Find Full Text PDF