Unlike other microbothriid monogenean infections in elasmobranchs, limited information is available on the biology and treatment of . As parasitic infection with was found in 21 juvenile blacktip reef sharks () at the Lotteworld aquarium in Seoul, South Korea, we aimed to investigate the anatomical features and treatment protocols for in this study. The parasites were sampled and fixed in 10% neutral-buffered formalin, and examined using light and scanning electron microscopy.
View Article and Find Full Text PDFIn most charge density wave (CDW) systems of different material classes, ranging from traditional correlated systems in low-dimension to recent topological systems with Kagome lattice, superconductivity emerges when the system is driven toward the quantum critical point (QCP) of CDW via external parameters of doping and pressure. Despite this rather universal trend, the essential hinge between CDW and superconductivity has not been established yet. Here, the evidence of coupling between electron and CDW fluctuation is reported, based on a temperature- and intercalation-dependent kink in the angle-resolved photoemission spectra of 2H-PdTaSe.
View Article and Find Full Text PDFNeutral radical bis(dithiolene) gold complexes [Au(dt)]˙ are known to exhibit a strong absorption in the 1400-2000 nm NIR absorption range. Here, we demonstrate that the NIR signature of mixed-ligand bis(dithiolene) gold complexes [Au(dt)(dt)]˙ associating two different dithiolene, dt and dt, is found at higher energy, out of the range of the homoleptic analogs [Au(dt)]˙ and [Au(dt)]˙, in the looked-after NIR-II 1000-1400 nm absorption range. An efficient synthetic approach towards precursor mixed-ligand monoanionic gold bis(dithiolene) complexes [Au(dt)(dt)] is reported.
View Article and Find Full Text PDFSymmetry-protected band degeneracy, coupled with a magnetic order, is the key to realizing novel magnetoelectric phenomena in topological magnets. While the spin-polarized nodal states have been identified to introduce extremely-sensitive electronic responses to the magnetic states, their possible role in determining magnetic ground states has remained elusive. Here, taking external pressure as a control knob, we show that a metal-insulator transition, a spin-reorientation transition, and a structural modification occur concomitantly when the nodal-line state crosses the Fermi level in a ferrimagnetic semiconductor MnSiTe.
View Article and Find Full Text PDFCsVSb exhibits superconductivity at T = 3.2 K after undergoing intriguing two high-temperature transitions: charge density wave order at ~98 K and electronic nematic order at T ~ 35 K. Here, we investigate nematic susceptibility in single crystals of Cs(VTi)Sb (x = 0.
View Article and Find Full Text PDFUltrafast optical manipulation of magnetic phenomena is an exciting achievement of mankind, expanding one's horizon of knowledge toward the functional nonequilibrium states. The dynamics acting on an extremely short timescale push the detection limits that reveal fascinating light-matter interactions for nonthermal creation of effective magnetic fields. While some cases are benchmarked by emergent transient behaviors, otherwise identifying the nonthermal effects remains challenging.
View Article and Find Full Text PDFCaLaFeAs (CLFA112) belongs to a new family of Fe-based superconductors (FeSCs) and has a unique crystal structure featuring an arsenic zigzag chain layer, which has been proposed to be a possible two-dimensional topological insulator. This suggests that CLFA112 is a potential topological superconductor-a platform to realize Majorana fermions. Up to now, even a clear superconducting (SC) gap in CLFA112 has never been observed, and the SC properties of CLFA112 remain largely elusive.
View Article and Find Full Text PDFThe structure of dielectric perovskite BaZrO, long known to be cubic at room temperature without any structural phase transition with variation in temperature, has been recently disputed to have different ground state structures with lower symmetries involving octahedra rotation. Pressure-dependent Raman scattering measurements can identify the hierarchy of energetically-adjacent polymorphs, helping in turn to understand its ground state structure at atmospheric pressure. Here, the Raman scattering spectra of high-quality BaZrO single crystals grown by the optical floating zone method are investigated in a pressure range from 1 atm to 42 GPa.
View Article and Find Full Text PDFIn spite of great application potential as transparent -type oxides with high electrical mobility at room temperature, threading dislocations (TDs) often found in the (Ba,La)SnO (BLSO) films can limit their intrinsic properties so that their role in the physical properties of BLSO films need to be properly understood. The electrical properties and electronic structure of BLSO films grown on SrTiO (001) (STO) and BaSnO (001) (BSO) substrates are comparatively studied to investigate the effect of the TDs. In the BLSO/STO films with TD density of ~1.
View Article and Find Full Text PDFA complex interplay of different energy scales involving Coulomb repulsion, spin-orbit coupling, and Hund's coupling energy in 2D van der Waals (vdW) material produces a novel emerging physical state. For instance, ferromagnetism in vdW charge transfer insulator CrGeTe_{3} provides a promising platform to simultaneously manipulate the magnetic and electrical properties for potential device implementation using few nanometers thick materials. Here, we show a continuous tuning of magnetic and electrical properties of a CrGeTe_{3} single crystal using pressure.
View Article and Find Full Text PDFIn order to understand the superconducting gap nature of a [Formula: see text] single crystal with [Formula: see text], in-plane thermal conductivity [Formula: see text], in-plane London penetration depth [Formula: see text], and the upper critical fields [Formula: see text] have been investigated. At zero magnetic field, it is found that no residual linear term [Formula: see text] exists and [Formula: see text] follows a power-law [Formula: see text] (T: temperature) with n = 2.66 at [Formula: see text], supporting nodeless superconductivity.
View Article and Find Full Text PDFJ Am Podiatr Med Assoc
May 2021
Background: The effects of shoes and foot type on balance are unclear. We aimed to investigate the differences between static and dynamic balance among three foot types and the changes in postural balance while wearing typical athletic shoes.
Methods: Based on the Foot Posture Index, the feet of 39 participants were classified as pronated, neutral, or supinated by a physiatrist.
Realizing a state of matter in two dimensions has repeatedly proven a novel route of discovering new physical phenomena. Van der Waals (vdW) materials have been at the center of these now extensive research activities. They offer a natural way of producing a monolayer of matter simply by mechanical exfoliation.
View Article and Find Full Text PDFTransparent -CuI/-SiZnSnO (SZTO) heterojunction diodes are successfully fabricated by thermal evaporation of a (111) oriented -CuI polycrystalline film on top of an amorphous -SZTO film grown by the RF magnetron sputtering method. A nitrogen annealing process reduces ionized impurity scattering dominantly incurred by Cu vacancy and structural defects at the grain boundaries in the CuI film to result in improved diode performance; the current rectification ratio estimated at ±2 V is enhanced from ≈10 to ≈10. Various diode parameters, including ideality factor, reverse saturation current, offset current, series resistance, and parallel resistance, are estimated based on the Shockley diode equation.
View Article and Find Full Text PDFObjective: To compare postural balance ability in patients with low back pain between groups with and without lumbosacral radiculopathy.
Methods: Patients who were referred for electromyography because of low back pain during the period from April 2017 through June 2018 were chosen as subjects. They were divided into groups with and without lumbosacral radiculopathy based on the results of electromyography.
The zero field Cr nuclear magnetic resonance was measured at low temperatures to investigate the interactions in the bond-frustrated S = 3/2 Heisenberg helimagnet ZnCrSe. A quadratic decrease of the sublattice magnetization was determined from the temperature dependence of the isotropic hyperfine field. We calculated the magnetization using linear spin wave theory for the incommensurate spiral spin order and compared this outcome with experimental results to estimate the coupling constants.
View Article and Find Full Text PDFRobot-assisted therapy is an effective treatment for stroke patients and has recently gained popularity. Clinicians and researchers are trying to identify predictors to stratify patients for ensuring better stroke rehabilitation outcomes. However, previous studies have reported controversial results regarding the predictors of upper limb recovery after robot-assisted therapy.
View Article and Find Full Text PDFStrong interplay of spin and charge/orbital degrees of freedom is the fundamental characteristic of the iron-based superconductors (FeSCs), which leads to the emergence of a nematic state as a rule in the vicinity of the antiferromagnetic state. Despite intense debate for many years, however, whether nematicity is driven by spin or orbital fluctuations remains unsettled. Here, by use of transport, magnetization, and As nuclear magnetic resonance (NMR) measurements, we show a striking transformation of the relationship between nematicity and spin fluctuations (SFs) in NaLi FeAs; For x ≤ 0.
View Article and Find Full Text PDFObjective: To investigate the relationship between functional level and muscle thickness (MT) of the rectus femoris (RF) and the gastrocnemius (GCM) in young children with cerebral palsy (CP).
Methods: The study participants were comprised of 26 children (50 legs) with spastic CP, aged 3-6 years, and 25 age-matched children with typical development (TD, 50 legs). The MT of the RF, medial GCM, and lateral GCM was measured with ultrasound imaging.
An electromagnon in the magnetoelectric (ME) hexaferrite Ba_{0.5}Sr_{2.5}Co_{2}Fe_{24}O_{41} (Co_{2}Z-type) single crystal is identified by time-domain terahertz (THz) spectroscopy.
View Article and Find Full Text PDFSensors (Basel)
December 2017
Recently, recognizing a user's daily activity using a smartphone and wearable sensors has become a popular issue. However, in contrast with the ideal definition of an experiment, there could be numerous complex activities in real life with respect to its various background and contexts: time, space, age, culture, and so on. Recognizing these complex activities with limited low-power sensors, considering the power and memory constraints of the wearable environment and the user's obtrusiveness at once is not an easy problem, although it is very crucial for the activity recognizer to be practically useful.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2018
We investigate the pressure and thermal annealing effects on BaFe Co As (Co-Ba122) single crystals with x = 0.1 and 0.17 via electrical transport measurements.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2017
Transparent p-CuI/n-BaSnO heterojunction diodes were successfully fabricated by the thermal evaporation of a (1 1 1) oriented γ-phase CuI film on top of an epitaxial BaSnO (0 0 1) film grown by the pulsed laser deposition. Upon the thickness of the CuI film being increased from 30 to 400 nm, the hole carrier density was systematically reduced from 6.0 × 10 to 1.
View Article and Find Full Text PDFMagnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric-ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted.
View Article and Find Full Text PDF