Int J Comput Biol Drug Des
September 2011
Most phenotype-identification methods in cell-based screening assume prior knowledge about expected phenotypes or involve intricate parameter-setting. They are useful for analysis targeting known phenotype properties; but need exists to explore, with minimum presumptions, the potentially-interesting phenotypes derivable from data. We present a method for this exploration, using clustering to eliminate phenotype-labelling requirement and GUI visualisation to facilitate parameter-setting.
View Article and Find Full Text PDFEstablishing transcriptional regulatory networks by analysis of gene expression data and promoter sequences shows great promise. We developed a novel promoter classification method using a Relevance Vector Machine (RVM) and Bayesian statistical principles to identify discriminatory features in the promoter sequences of genes that can correctly classify transcriptional responses. The method was applied to microarray data obtained from Arabidopsis seedlings treated with glucose or abscisic acid (ABA).
View Article and Find Full Text PDF