Publications by authors named "Kee Bong Choi"

We report a laser-pyrolyzed carbon (LPC) electrode prepared from a black photoresist for an on-chip microsupercapacitor (MSC). An interdigitated LPC electrode was fabricated by direct laser writing using a high-power carbon dioxide (CO) laser to simultaneously carbonize and pattern a spin-coated black SU-8 film. Due to the high absorption of carbon blacks in black SU-8, the laser-irradiated SU-8 surface was directly exfoliated and carbonized by a fast photo-thermal reaction.

View Article and Find Full Text PDF

The effective production of nanopatterned films generally requires a nanopatterned roll mold with a large area. We report on a novel system to fabricate large-area roll molds by recombination of smaller patterned areas in a step-and-repeat imprint lithography process. The process is accomplished in a method similar to liquid transfer imprint lithography (LTIL).

View Article and Find Full Text PDF

This paper shows an improved mold replication process that uses polyurethane acrylate (PUA) and polyethylene terephthalate (PET) for the fabrication of an ultraviolet (UV) imprinting mold used in substrate conformal imprint lithography (SCIL). With the conventional replication process, which uses hard polydimethylsiloxane (h-PDMS) as a pattern layer, it is difficult to detach the mold from a silicon master for metal oxide semiconductor field effect transistor (MOSFET) that has patterns with over 1-micron depth. However, the method proposed in this paper allows us to easily replicate patterns that have more than 1-micron depth.

View Article and Find Full Text PDF

We present a process based on nanoimprint lithography for the fabrication of a microchannel mold having nanopatterns formed at the bottoms of its microchannels. A focused laser beam selectively cures the resist in the micrometer scale during nanoimprint lithography. Nanopatterns within the microchannels may be used to control microfluidic behavior.

View Article and Find Full Text PDF

This paper presents the fabrication of a thin and flexible polydimethylsiloxane (PDMS) stamp with a thickness of a few tens of um and its application to nanoimprint lithography (NIL). The PDMS material generally has a low elastic modulus and high adhesive characteristics. Therefore, after being treated, the thin PDMS stamp is easily deformed and torn, adhering to itself and other materials.

View Article and Find Full Text PDF

This paper shows a novel nano-imprint method with a polydimethylsiloxane (PDMS) replica mold that was bonded on a cylindrically inflated polycarbonate (PC) film via a low air pressure. The PDMS mold, which was deformed in terms of its cylindrical shape, made a line contact with a substrate from the center region and the contact region, then expanded gradually to the outside of the substrate when the contact force increased. This contact procedure squeezed the resin that was dropped on the substrate from the center to the outside, which prevented the trapping of air bubbles while the cavities were filled with the patterns on the PDMS mold.

View Article and Find Full Text PDF

This paper presents a piezo-driven compliant stage for nano positioning with two degree-of-freedom parallel linear motions. Nano positioning is one of the most important factors in completion of nanotechnologies. It can be accomplished by flexure-based compliant stages driven by piezo-actuators.

View Article and Find Full Text PDF

A new type of cylindrical ultrasonic linear microactuator (CULMA) is introduced. The traveling wave generation condition in the stator is presented, which was confirmed using simulation and experimentation. The design and fabrication process to develop the stator is described.

View Article and Find Full Text PDF