Publications by authors named "Kedei N"

Epithelial tumors are characterized by abundant inter- and intra-tumor heterogeneity, which complicates diagnostics and treatment. The contribution of cancer-stroma interactions to this heterogeneity is poorly understood. Here, we report a paradigm to quantify phenotypic diversity in head and neck squamous cell carcinoma (HNSCC) with single-cell resolution.

View Article and Find Full Text PDF

Functional tumor-specific CD8+ T cells are essential for an effective anti-tumor immune response and the efficacy of immune checkpoint inhibitor therapy. In comparison to other organ sites, we found higher numbers of tumor-specific CD8+ T cells in primary, metastatic liver tumors in murine tumor models. Despite their abundance, CD8+ T cells in the liver displayed an exhausted phenotype.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on specific clusters of CD8+ T cells, categorized as CD8-NOS2+COX2+ and CD8-NOS2-COX2+, which play a significant role in the immune response to tumors.
  • These unique cellular environments affect the spatial structure of CD8+ T cell interactions within tumors and can influence patient outcomes.
  • The findings suggest that existing treatments, like NOS inhibitors and NSAIDs, could potentially target these cellular neighborhoods to improve cancer therapy.
View Article and Find Full Text PDF

Activating mutations in the RAS/MAPK pathway are observed in relapsed neuroblastoma. Preclinical studies indicate that these tumors have an increased sensitivity to inhibitors of the RAS/MAPK pathway, such as MEK inhibitors. MEK inhibitors do not induce durable responses as single agents, indicating a need to identify synergistic combinations of targeted agents to provide therapeutic benefit.

View Article and Find Full Text PDF

Low response rate, treatment relapse, and resistance remain key challenges for cancer treatment with immune checkpoint blockade (ICB). Here we report that loss of specific tumor suppressors (TS) induces an inflammatory response and promotes an immune suppressive tumor microenvironment. Importantly, low expression of these TSs is associated with a higher expression of immune checkpoint inhibitory mediators.

View Article and Find Full Text PDF
Article Synopsis
  • Immune therapy is becoming a key approach in cancer treatment, particularly for aggressive types like triple negative breast cancer (TNBC), where factors like COX2 limit treatment effectiveness.
  • A study revealed that combining radiation with the anti-inflammatory drug indomethacin significantly boosted the immune response, reduced tumor growth, and lowered metastasis in mouse models of TNBC.
  • The combination treatment led to better local control of tumors and increased survival rates by enhancing immune activity, suggesting that existing NSAIDs could improve the success of radiation therapy in cancer patients.
View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) constitute a prominent cellular component of the tumor stroma, with various pro-tumorigenic roles. Numerous attempts to target fibroblast activation protein (FAP), a highly expressed marker in immunosuppressive CAFs, have failed to demonstrate anti-tumor efficacy in human clinical trials. Near-infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor therapy that utilizes an antibody-photo-absorbing conjugate activated by near-infrared light.

View Article and Find Full Text PDF

Estrogen receptor-negative (ER-) breast cancer is an aggressive breast cancer subtype with limited therapeutic options. Upregulated expression of both inducible nitric oxide synthase (NOS2) and cyclo-oxygenase (COX2) in breast tumors predicts poor clinical outcomes. Signaling molecules released by these enzymes activate oncogenic pathways, driving cancer stemness, metastasis, and immune suppression.

View Article and Find Full Text PDF

Replication of Vibrio cholerae chromosome 2 (Chr2) initiates when the Chr1 locus, crtS (Chr2 replication triggering site) duplicates. The site binds the Chr2 initiator, RctB, and the binding increases when crtS is complexed with the transcription factor, Lrp. How Lrp increases the RctB binding and how RctB is subsequently activated for initiation by the crtS-Lrp complex remain unclear.

View Article and Find Full Text PDF

Thymic epithelial cells (TEC) control T cell development and play essential roles in establishing self-tolerance. By using -driven ablation of gene in TEC, we identified as a critical factor in TEC development. deficiency resulted in a hypoplastic thymus-evident from fetal stages into adulthood-in which a dramatic increase in the frequency of apoptotic TEC was observed.

View Article and Find Full Text PDF

Background And Aims: The fitness and viability of a tumor ecosystem are influenced by the spatial organization of its cells. We aimed to study the structure, architecture, and cell-cell dynamics of the heterogeneous liver cancer tumor microenvironment using spatially resolved multiplexed imaging.

Approach And Results: We performed co-detection by indexing multiplexed immunofluorescence imaging on 68 HCC biopsies from Thai patients [(Thailand Initiative in Genomics and Expression Research for Liver Cancer (TIGER-LC)] as a discovery cohort, and then validated the results in an additional 190 HCC biopsies from Chinese patients [Liver Cancer Institute (LCI)].

View Article and Find Full Text PDF

Cells can irreversibly exit the cell cycle and become senescent to safeguard against uncontrolled proliferation. While the p53-p21 and p16-Rb pathways are thought to mediate senescence, they also mediate reversible cell cycle arrest (quiescence), raising the question of whether senescence is actually reversible or whether alternative mechanisms underly the irreversibility associated with senescence. Here, we show that senescence is irreversible and that commitment to and maintenance of senescence are mediated by irreversible MYC degradation.

View Article and Find Full Text PDF

Mucosal-associated invariant T (MAIT) cells represent an abundant innate-like T cell subtype in the human liver. MAIT cells are assigned crucial roles in regulating immunity and inflammation, yet their role in liver cancer remains elusive. Here, we present a MAIT cell-centered profiling of hepatocellular carcinoma (HCC) using scRNA-seq, flow cytometry, and co-detection by indexing (CODEX) imaging of paired patient samples.

View Article and Find Full Text PDF

The overexpression of inhibitor of apoptosis (IAP) proteins is strongly related to poor survival of women with ovarian cancer. Recurrent ovarian cancers resist apoptosis due to the dysregulation of IAP proteins. Mechanistically, Second Mitochondrial Activator of Caspases (SMAC) mimetics suppress the functions of IAP proteins to restore apoptotic pathways resulting in tumor death.

View Article and Find Full Text PDF

Antitumor immune polarization is a key predictor of clinical outcomes to cancer therapy. An emerging concept influencing clinical outcome involves the spatial location of CD8 T cells, within the tumor. Our earlier work demonstrated immunosuppressive effects of NOS2 and COX2 tumor expression.

View Article and Find Full Text PDF

Purpose: PAX-fusion negative rhabdomyosarcoma (FN RMS) is driven by alterations in the RAS/MAP kinase pathway and is partially responsive to MEK inhibition. Overexpression of IGF1R and its ligands is also observed in FN RMS. Preclinical and clinical studies have suggested that IGF1R is itself an important target in FN RMS.

View Article and Find Full Text PDF

Introduction: The pathogenesis of thymic epithelial tumors remains largely unknown. We previously identified GTF2I L424H as the most frequently recurrent mutation in thymic epithelial tumors. Nevertheless, the precise role of this mutation in tumorigenesis of thymic epithelial cells is unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied the impact of lung intratumor microbiomes on lung cancer development and treatment, highlighting a lack of detailed information on microbes within lung tumors.
  • They utilized a new method to analyze the expression of host genes and specific microbes in lung tumors from 12 patients with early-stage lung cancer.
  • Findings indicated a higher concentration of bacteria in tumor cells compared to other immune cells, suggesting a link between bacterial presence and oncogenic pathways, which could inform treatment strategies aimed at reducing intratumor microbiomes for patient benefits.
View Article and Find Full Text PDF

Protein function often requires remodeling of protein structure. In the well-studied iteron-containing plasmids, the initiator of replication has a dimerization interface that undergoes chaperone-mediated remodeling. This remodeling reduces dimerization and promotes DNA replication, since only monomers bind origin DNA.

View Article and Find Full Text PDF

Bryostatin 1 is a natural macrolide shown to improve neuronal connections and enhance memory in mice. Its mechanism of action is largely attributed to the modulation of novel and conventional protein kinase Cs (PKCs) by binding to their regulatory C1 domains. Munc13-1 is a C1 domain-containing protein that shares common endogenous and exogenous activators with novel and conventional PKC subtypes.

View Article and Find Full Text PDF

Important strides are being made in understanding the effects of structural features of bryostatin 1, a candidate therapeutic agent for cancer and dementia, in conferring its potency toward protein kinase C and the unique spectrum of biological responses that it induces. A critical pharmacophoric element in bryostatin 1 is the secondary hydroxy group at the C26 position, with a corresponding primary hydroxy group playing an analogous role in binding of phorbol esters to protein kinase C. Herein, we describe the synthesis of a bryostatin homologue in which the C26 hydroxy group is primary, as it is in the phorbol esters, and show that its biological activity is almost indistinguishable from that of the corresponding compound with a secondary hydroxy group.

View Article and Find Full Text PDF

To investigate the cellular distribution of tumor-promoting vs. non-tumor-promoting bryostatin analogues, we synthesized fluorescently labeled variants of two bryostatin derivatives that have previously shown either phorbol ester-like or bryostatin-like biological activity in U937 leukemia cells. These new fluorescent analogues both displayed high affinity for protein kinase C (PKC) binding and retained the basic properties of the parent unlabeled compounds in U937 assays.

View Article and Find Full Text PDF

The PKC isozymes represent the most prominent family of signaling proteins mediating response to the ubiquitous second messenger diacylglycerol. Among them, PKCθ is critically involved in T-cell activation. Whereas all the other conventional and novel PKC isoforms have twin C1 domains with potent binding activity for phorbol esters, in PKCθ only the C1b domain possesses potent binding activity, with little or no activity reported for the C1a domain.

View Article and Find Full Text PDF

Munc13-1 is a presynaptic active-zone protein essential for neurotransmitter release and presynaptic plasticity in the brain. This multidomain scaffold protein contains a C1 domain that binds to the activator diacylglycerol/phorbol ester. Although the C1 domain bears close structural homology with the C1 domains of protein kinase C (PKC), the tryptophan residue at position 22 (588 in the full-length Munc13-1) occludes the activator binding pocket, which is not the case for PKC.

View Article and Find Full Text PDF

RasGRP comprises a family of guanine nucleotide exchange factors, regulating the dissociation of GDP from Ras GTPases to enhance the formation of the active GTP-bound form. RasGRP1 possesses REM (Ras exchange), GEF (catalytic), EF-hand, C1, SuPT (suppressor of PT), and PT (plasma membrane-targeting) domains, among which the C1 domain drives membrane localization in response to diacylglycerol or phorbol ester and the PT domain recognizes phosphoinositides. The homologous family member RasGRP3 shows less plasma membrane localization.

View Article and Find Full Text PDF