Micronutrient deficiency is most prevalent in developing regions of the world, including Africa and Southeast Asia where pearl millet ( L.) is a major crop. Increasing essential minerals in pearl millet through biofortification could reduce malnutrition caused by deficiency.
View Article and Find Full Text PDFImproving essential nutrient content in staple food crops through biofortification breeding can overcome the micronutrient malnutrition problem. Genetic improvement depends on the availability of genetic variability in the primary gene pool. This study was aimed to ascertain the magnitude of variability in a core germplasm collection of diverse origin and predict pearl millet biofortification prospects for essential micronutrients.
View Article and Find Full Text PDFConsidering the pervasive malnutrition caused by micronutrients, particularly those arising from the deficiencies of iron (Fe) and zinc (Zn), the primary focus of research in pearl millet is on biofortifying the crop with these two minerals. Pearl millet is a highly cross-pollinated crop where open-pollinated varieties (OPVs) and hybrids are the two distinct cultivar types. In view of the severe deficiency of Fe and Zn in Asia and Africa where this crop is widely consumed, crop biofortification holds a key role in attenuating this crisis.
View Article and Find Full Text PDFGenetics of micronutrients and their relationships with grain yield and other traits have a direct bearing on devising effective strategies for breeding biofortified crop cultivars. A line × tester study of 196 hybrids and their 28 parental lines of pearl millet (Pennisetum glaucum (L.) R.
View Article and Find Full Text PDFPollen and seed dispersal patterns were analyzed in both natural and experimental populations of Avena barbata. Localized estimates of gene flow rates and plant densities gave estimates of neighborhood size in the range of 40 to 400 plants; the estimates of mean rate and distance of gene flow seemed to vary widely due to variable wind direction, rodent activity, microsite heterogeneity, etc. The relative sizes of neighborhoods in several populations were correlated with the patchy distribution of different genotypes (scored for lemma color and leaf sheath hairiness) within short distances, but patch sizes had a wide range among different sites.
View Article and Find Full Text PDF