Publications by authors named "Keckes J"

Article Synopsis
  • Lithium dendrite growth in solid-state electrolytes is a major barrier to developing safe and effective all-solid-state lithium batteries due to the risk of electrolyte fractures.* -
  • The study utilizes advanced microscopy techniques to explore the microscopic mechanisms behind these fractures, revealing strain patterns and changes in lattice orientation related to dendrite growth.* -
  • Notably, dislocations were observed near dendrite tips, indicating that the mechanical stress from expanding dendrites could cause dislocations, which may influence how dendrites grow and branch.*
View Article and Find Full Text PDF

At present, the power conversion efficiency of single-junction perovskite-based solar cells reaches over 26%. The further efficiency increase of perovskite-based optoelectronic devices is limited mainly by defects, causing the nonradiative recombination of charge carriers. To improve efficiency and ensure reproducible fabrication of high-quality layers, it is crucial to understand the perovskite nucleation and growth mechanism along with associated process control to reduce the defect density.

View Article and Find Full Text PDF

Solid-state batteries have the potential to replace the current generation of liquid electrolyte batteries. However, the major limitation resulting from their solid-state architecture is the gradual loss of ionic conductivity due to the loss of physical contact between the individual battery components during charging/discharging. This is mainly due to mechanical stresses caused by volume changes in the cathode and anode during lithiation and delithiation.

View Article and Find Full Text PDF

Lithium dendrites belong to the key challenges of solid-state battery research. They are unavoidable due to the imperfect nature of surfaces containing defects of a critical size that can be filled by lithium until fracturing the solid electrolyte. The penetration of Li metal occurs along the propagating crack until a short circuit takes place.

View Article and Find Full Text PDF

Understanding the cause of lithium dendrites formation and propagation is essential for developing practical all-solid-state batteries. Li dendrites are associated with mechanical stress accumulation and can cause cell failure at current densities below the threshold suggested by industry research (i.e.

View Article and Find Full Text PDF

Nanocrystalline alloy thin films offer a variety of attractive properties, such as high hardness, strength and wear resistance. A disadvantage is the large residual stresses that result from their fabrication by deposition, and subsequent susceptibility to defects. Here, we use experimental and modelling methods to understand the impact of minority element concentration on residual stresses that emerge after deposition in a tungsten-titanium film with different titanium concentrations.

View Article and Find Full Text PDF

Application of low-cost carbon black from lignin highly depends on the materials properties, which might by determined by raw material and processing conditions. Four different technical lignins were subjected to thermostabilization followed by stepwise heat treatment up to a temperature of 2000 °C in order to obtain micro-sized carbon particles. The development of the pore structure, graphitization and inner surfaces were investigated by X-ray scattering complemented by scanning electron microscopy and FTIR spectroscopy.

View Article and Find Full Text PDF

The currently pursued implementation of wood into novel high performance applications such as automotive parts require knowledge about the material behaviour including ultimate strength. Previous research has shown that fiber deviation seems to be the dominating factor influencing the strength of thin veneers. This study aims to further investigate and quantify the influence of fiber deviation in two dimension and different hierarchical levels on the tensile strength of thin birch veneers.

View Article and Find Full Text PDF

The dependence of decomposition routes on intrinsic microstructure and stress in nanocrystalline transition metal nitrides is not yet fully understood. In this contribution, three AlCrN thin films with residual stress magnitudes of -3510, -4660 and -5930 MPa in the as-deposited state were in-situ characterized in the range of 25-1100 °C using in-situ synchrotron high-temperature high-energy grazing-incidence-transmission X-ray diffraction and temperature evolutions of phases, coefficients of thermal expansion, structural defects, texture as well as residual, thermal and intrinsic stresses were evaluated. The multi-parameter experimental data indicate a complex intrinsic stress and phase changes governed by a microstructure recovery and phase transformations taking place above the deposition temperature.

View Article and Find Full Text PDF

The prevention of excessive water uptake in wood in order to avert discoloration, swelling and decay is a major challenge for wood-based applications. We developed a facile surface treatment to protect wood from liquid water uptake that does not require harsh process conditions or toxic solvents. Water-based and surfactant-free dispersions of sub-micron alkyl ketene dimer wax particles were prepared and sprayed onto wood substrates.

View Article and Find Full Text PDF

Nature uses self-assembly of a fairly limited selection of components to build hard and tough protective tissues like nacre and enamel. The resulting hierarchical micro/nanostructures provide decisive toughening mechanisms while preserving strength. However, to mimic microstructural and mechanical characteristics of natural materials in application-relevant synthetic nanostructures has proven to be difficult.

View Article and Find Full Text PDF
Article Synopsis
  • * The production of oxide layers and nanowires was monitored using grazing incidence small-angle X-ray scattering techniques.
  • * Results showed that the sputtered copper surface had the highest density of nanowires, while the evaporated copper surface had the lowest, likely due to differences in oxide grain sizes and copper grain boundary diffusion.
View Article and Find Full Text PDF

Carbon particles were produced from kraft lignin through carbonization of perfectly spherical, sub-micron beads obtained by aerosol flow. The structure of the resulting carbon particles was elucidated and compared to that derived from commercially available technical lignin powder, which is undefined in geometry. In addition to the smaller diameters of the lignin beads (<1 µm) compared to those of the lignin powder (100 µm), the former displayed a slightly higher structural order as revealed by X-ray diffraction and Raman spectroscopy.

View Article and Find Full Text PDF

In addition to surface roughness and shape precision, the subsurface damage (SSD) generated by single point diamond turning (SPDT) of Ge and Si crystal optics is of increasing importance with decreasing wavelength from infrared through visible, UV, and x-ray. There are various components of SSD, e.g.

View Article and Find Full Text PDF

The full strain and stress tensor determination in a triaxially stressed single crystal using X-ray diffraction requires a series of lattice spacing measurements at different crystal orientations. This can be achieved using a tunable X-ray source. This article reports on a novel experimental procedure for single-shot full strain tensor determination using polychromatic synchrotron radiation with an energy range from 5 to 23 keV.

View Article and Find Full Text PDF

Because of the tremendous variability of crystallite sizes and shapes in nano-materials, it is challenging to assess the corresponding size-property relationships and to identify microstructures with particular physical properties or even optimized functions. This task is especially difficult for nanomaterials formed by self-organization, where the spontaneous evolution of microstructure and properties is coupled. In this work, two compositionally graded TiAlN films were (i) grown using chemical vapour deposition by applying a varying ratio of reacting gases and (ii) subsequently analysed using cross-sectional synchrotron X-ray nanodiffraction, electron microscopy and nanoindentation in order to evaluate the microstructure and hardness depth gradients.

View Article and Find Full Text PDF

Carbon microparticles were produced from organosolv lignin at 2000 °C under argon atmosphere following oxidative thermostabilisation at 250 °C. Scanning electron microscopy, X-ray diffraction, small-angle X-ray scattering, and electro-conductivity measurements revealed that the obtained particles were electrically conductive and were composed of large graphitic domains. Poly(lactic acid) filled with various amounts of lignin-derived microparticles showed higher tensile stiffness increasing with particle load, whereas strength and extensibility decreased.

View Article and Find Full Text PDF

A facile approach to obtaining cellulose nanofiber-reinforced polystyrene with greatly improved mechanical performance compared to unreinforced polystyrene is presented. Cellulose nanofibers were obtained by mechanical fibrillation of partially delignified wood (MFLC) and compared to nanofibers obtained from bleached pulp. Residual hemicellulose and lignin imparted amphiphilic surface chemical character to MFLC, which enabled the stabilization of emulsions of styrene in water.

View Article and Find Full Text PDF

Load-displacement curves measured during indentation experiments on thin films depend on non-homogeneous intrinsic film microstructure and residual stress gradients as well as on their changes during indenter penetration into the material. To date, microstructural changes and local stress concentrations resulting in plastic deformation and fracture were quantified exclusively using numerical models which suffer from poor knowledge of size dependent material properties and the unknown intrinsic gradients. Here, we report the first in-situ characterization of microstructural changes and multi-axial stress distributions in a wedge-indented 9 μm thick nanocrystalline TiN film volume performed using synchrotron cross-sectional X-ray nanodiffraction.

View Article and Find Full Text PDF

Synchrotron X-ray nanodiffraction is used to analyse residual stress distributions in a 200 nm-thick W film deposited on the scalloped inner wall of a through-silicon via. The diffraction data are evaluated using a novel dedicated methodology which allows the quantification of axial and tangential stress components under the condition that radial stresses are negligible. The results reveal oscillatory axial stresses in the range of ∼445-885 MPa, with a distribution that correlates well with the scallop wavelength and morphology, as well as nearly constant tangential stresses of ∼800 MPa.

View Article and Find Full Text PDF

Biological materials possess a variety of artful interfaces whose size and properties are adapted to their hierarchical levels and functional requirements. Bone, nacre, and wood exhibit an impressive fracture resistance based mainly on small crystallite size, interface organic adhesives and hierarchical microstructure. Currently, little is known about mechanical concepts in macroscopic biological interfaces like the branch-stem junction with estimated 10(14) instances on earth and sizes up to few meters.

View Article and Find Full Text PDF
Article Synopsis
  • The development of various structural models for TaO identifies superstructures as the most stable but difficult to create during physical vapor deposition due to required kinetic activity and long-range ordering.
  • A new metastable orthorhombic structure for TaO is introduced with specific lattice parameters, featuring 14 atoms in its unit cell and a unique arrangement of oxygen sites, characterized by a specific space group and low formation energy.
  • This new structure shows a band gap of 2.5 eV, which aligns better with experimental results compared to other models, and it suggests that high-temperature annealing is necessary for developing superstructures in sputtered TaO films.
View Article and Find Full Text PDF

μLaue diffraction with a polychromatic X-ray beam can be used to measure strain fields and crystal orientations of micro crystals. The hydrostatic strain tensor can be obtained once the energy profile of the reflections is measured. However, this remains a challenge both on the time scale and reproducibility of the beam position on the sample.

View Article and Find Full Text PDF

Novel scanning synchrotron cross-sectional nanobeam and conventional laboratory as well as synchrotron Laplace X-ray diffraction methods are used to characterize residual stresses in exemplary 11.5 µm-thick TiN coatings. Both real and Laplace space approaches reveal a homogeneous tensile stress state and a very pronounced compressive stress gradient in as-deposited and blasted coatings, respectively.

View Article and Find Full Text PDF

Background: The free amino acids profile of 192 samples of seven different floral types of Serbian honey (acacia, linden, sunflower, rape, basil, giant goldenrod, and buckwheat) from six different regions was analysed in order to distinguish honeys by their botanical origin.

Results: The most abundant amino acids were proline, alanine, phenylalanine, threonine and arginine. Based on the established amino acids profiles, some important differences have been identified among studied honey samples relying on the basic descriptive statistics data, and confirmed by multivariate chemometric methods.

View Article and Find Full Text PDF