The twin boundaries and inherent lattice strain of five-fold twin (5-FT) structures offer a promising and innovative approach to tune nanocrystal configurations and properties, enriching nanomaterial performance. However, a comprehensive understanding of the nonclassical growth models governing 5-FT nanocrystals remains elusive, largely due to the constraints of their small thermodynamically stable size and complex twin configurations. Here, we conducted in situ investigations to elucidate the atomic-scale mechanisms driving size-dependent and twin configuration-related aggregation phenomena between 5-FT and other nanoparticles at the atomic scale.
View Article and Find Full Text PDFThree types of solution treatment and aging were designed to reveal the α' decomposition and its effect on the mechanical properties of near-α Ti-80 alloy, as follows: solution at 970 °C then quenching (ST), ST + aging at 600 °C for 5 h (STA-1), and ST + aging 600 °C for 24 h (STA-2). The results show that the microstructures of the ST samples were mainly composed of equiaxed α and acicular α', with a large number of dislocations confirmed by the KAM results. After subsequent aging for 5 h, α' decomposed into acicular fine α and nano-β (intergranular β, intragranular β) in the STA-1 specimen, which obstructed dislocation motion during deformation, resulting in the STA-1 specimen exhibiting the most excellent yield strength (1012 MPa) and maintaining sufficient elongation (8.
View Article and Find Full Text PDFReal-time sensing of dopamine is essential for understanding its physiological function and clarifying the pathophysiological mechanism of diseases caused by impaired dopamine systems. However, severe fouling from nonspecific protein adsorption, for a long time, limited conventional neural recording electrodes concerning recording stability. This study reported a high-antifouling nanocrystalline boron-doped diamond microsensor grown on a carbon fiber substrate.
View Article and Find Full Text PDFStretchable self-powered sensors are of significant interest in next-generation wearable electronics. However, current strategies for creating stretchable piezoelectric sensors based on piezoelectric polymers or 0-3 piezoelectric composites face several challenges such as low piezoelectric activity, low sensitivity, and poor durability. In this paper, a biomimetic soft-rigid hybrid strategy is used to construct a new form of highly flexible, high-performance, and stretchable piezoelectric sensor.
View Article and Find Full Text PDF"Perovskite/carbon" interface is a bottle-neck for hole-conductor-free, carbon-electrode basing perovskite solar cells due to the energy mismatch and concentrated defects. In this article, in-situ healing strategy is proposed by doping octylammonium iodide into carbon paste that used to prepare carbon-electrode on perovskite layer. This strategy is found to strengthen interfacial contact and reduce interfacial defects on one hand, and slightly elevate the work function of the carbon-electrode on other hand.
View Article and Find Full Text PDFThe dynamic spheroidization mechanism and its orientation dependence in Ti-6Al-2Mo-2V-1Fe alloys during subtransus hot deformation were studied in this work. For this purpose, hot compression tests were carried out at temperatures of 780-880 °C, with strain rates of 0.001-0.
View Article and Find Full Text PDFAdvanced oxidation processes are commonly considered one of the most effective techniques to degrade refractory organic pollutants, but the limitation of a single process usually makes it insufficient to achieve the desired treatment. This work introduces, for the first time, a highly-efficient coupled advanced oxidation process, namely Electro-Oxidation-Persulfate-Electro-Fenton (EO-PS-EF). Leveraging the EO-PS-EF tri-coupling system, diverse contaminants can be highly efficiently removed with the help of reactive hydroxyl and sulfate radicals generated via homogeneous and heterogeneous bi-catalysis, as certified by radical quenching and electron spin resonance.
View Article and Find Full Text PDFPolyvinyl pyrrolidone (PVP) is doped to PbI and organic salt during two-step growth of halideperovskite. It is observed that PVP molecules can interact with both PbI and organic salt, reduce the aggregation and crystallization of the two, and then slow down the coarsening rate of perovskite. As doping concentration increases from 0 to 1 mM in organic salt, average crystallite size of perovskite decreases monotonously from 90 to 34 nm; Surface fluctuation reduces from 259.
View Article and Find Full Text PDFFast reaction between organic salt and lead iodide always leads to small perovskite crystallites and concentrated defects. Here, polyacrylic acid is blended with organic salt, so as to regulate the crystallization in a two-step growth method. It is observed that addition of polyacrylic acid retards aggregation and crystallization behavior of the organic salt, and slows down the reaction rate between organic salt and PbI , by which "slow-release effect" is defined.
View Article and Find Full Text PDFThe globularization of the lamellar α phase by thermomechanical processing and subsequent annealing contributes to achieving the well-balanced strength and plasticity of titanium alloys. A high-throughput experimental method, wedge-shaped hot-rolling, was designed to obtain samples with gradient true strain distribution of 0~1.10.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
Flexible piezoelectric nanogenerators are playing an important role in delivering power to next-generation wearable electronic devices due to their high-power density and potential to create self-powered sensors for the Internet of Things. Among the range of available piezoelectric materials, poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE)-based piezoelectric composites exhibit significant potential for flexible piezoelectric nanogenerator applications. However, the high electric fields that are required for poling cannot be readily applied to polymer composites containing piezoelectric fillers due to the high permittivity contrast between the filler and matrix, which reduces the dielectric strength.
View Article and Find Full Text PDFIn this work, the anisotropic microstructure and mechanical properties of selective laser melted (SLMed) Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy before and after aging treatment are investigated. Owing to the unique thermal gradient, the prior columnar β grains with {001} texture component grow in the building direction, and the mechanical properties of the as-fabricated Ti-55511 alloy exhibit slight anisotropy. Aging treatment creates uniform precipitation of the α phase at the boundaries as well as the interior of β grains.
View Article and Find Full Text PDFThe functional reconfiguration of transistors and memory in homogenous ferroelectric devices offers significant opportunities for implementing the concepts of in-memory computing and logic-memory monolithic integration. Thus far, reconfiguration is realized through programmable doping profiles in the semiconductor channel using multiple-gate operation. This complex device architecture limits further scaling to match the overall chip requirements.
View Article and Find Full Text PDFDespite the widespread application of Ti6Al4V and tantalum (Ta) in orthopedics, bioinertia and high cost limit their further applicability, respectively, and tremendous efforts have been made on the Ti6Al4V-Ta alloy and Ta coating to address these drawbacks. However, the scaffolds obtained are unsatisfactory. In this study, novel high-interface-strength Ti6Al4V-based porous Ta scaffolds were successfully manufactured using Laser Powder Bed Fusion for the first time, in which porous Ta was directly manufactured on a solid Ti6Al4V substrate.
View Article and Find Full Text PDFThe sequence of transitions between different phases of BiNbO has been thoroughly investigated and clarified using thermal analysis, high-resolution neutron diffraction, and Raman spectroscopy. The theoretical optical phonon modes of the α-phase have been calculated. Based on thermoanalytical data supported by density functional theory (DFT) calculations, the β-phase is proposed to be metastable, while the α- and γ-phases are stable below and above 1040 °C, respectively.
View Article and Find Full Text PDFPiezoelectric materials, with their unique ability for mechanical-electrical energy conversion, have been widely applied in important fields such as sensing, energy harvesting, wastewater treatment, and catalysis. In recent years, advances in material synthesis and engineering have provided new opportunities for the development of bio-piezoelectric materials with excellent biocompatibility and piezoelectric performance. Bio-piezoelectric materials have attracted interdisciplinary research interest due to recent insights on the impact of piezoelectricity on biological systems and their versatile biomedical applications.
View Article and Find Full Text PDFThe reduction of CO into useful hydrocarbon chemicals has attracted significant attention in light of the depletion in fossil resources and the global demand for sustainable sources of energy. In this paper, we demonstrate piezo-catalytic electrochemical reduction of CO by exploiting low Curie temperature, ∼ 38 °C, Nb-doped lead zirconate titanate (PZTN) piezoelectric particulates. The large change in spontaneous polarisation of PZTN due to the acoustic pressures from to the application of ultrasound in the vicinity of the creates free charges for CO reduction.
View Article and Find Full Text PDFIn order to solve the problems of high energy consumption and low current efficiency in electrochemical oxidation (EO) degradation under the traditional constant output process (COP), a gradient output process (GOP) of current density is proposed in this paper. That is, the current density is gradually reduced in a fixed degradation time, and the Reactive Blue 19 simulated dye wastewater was used as the degradation target. The general applicability of the process was further confirmed by studying the optimal gradient current density output parameters, the dye concentration, electrolyte concentration and other dye compounds with different molecular structures.
View Article and Find Full Text PDFPurpose: Wound healing, especially of infected wounds, remains a clinical challenge in plastic surgery. This study aimed to manufacture a novel and multifunctional wound dressing by combining graphene oxide/copper nanocomposites (GO/Cu) with chitosan/hyaluronic acid, providing significant opportunities for the therapy of wound repair in wounds with a high risk of bacterial infection.
Methods: In this study, GO/Cu-decorated chitosan/hyaluronic acid dressings (C/H/GO/Cu) were prepared using sodium trimetaphosphate (STMP) crosslinking and the vacuum freeze-drying method, and chitosan/hyaluronic acid dressings (C/H) and GO-incorporated chitosan/hyaluronic acid dressings (C/H/GO) served as controls.
Owing to its high specific strength and low density, Al-Cu alloys have been extensively used in aerospace for lightweight components. Additive manufacturing techniques such as selective laser melting, which offers geometric freedom, is suitable for topology-optimized designs. In this study, the effect of processing parameters on the densification, microstructure, and mechanical properties of additively manufactured Al-Cu alloy 2124 by selective laser melting was investigated.
View Article and Find Full Text PDFNear β-Ti alloys with high strength and good ductility are desirable for application in aviation and aerospace industries. Nevertheless, strength and ductility are usually mutually exclusive in structural materials. Here we report a new thermo-mechanical process, that is, the alloy was cross-rolled in β field then aged at 600 °C for 1 h.
View Article and Find Full Text PDFMulti-pass hot rolling was performed on bi-modal Ti-55511 alloy with 50% rolling reduction at 700 °C. Mechanical properties were evaluated by tensile test, and microstructure evolution was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the Ti-55511 alloy with bi-modal microstructure exhibits good strength and high ductility (1102 MPa, 21.
View Article and Find Full Text PDFIn this paper, boron-doped diamond (BDD) electro-activated persulfate was studied to decompose malachite green (MG). The degradation results indicate that the decolorization performance of MG for the BDD electro-activated persulfate (BDD-EAP) system is 3.37 times that of BDD electrochemical oxidation (BDD-EO) system, and BDD-EAP system also exhibited an enhanced total organic content (TOC) removal (2.
View Article and Find Full Text PDF