Reactive electrochemical membranes (REMs) are promising technologies in treating pharmaceuticals and personal care products (PPCPs) in water. Herein, a novel carbon-based electrocatalytic dual-membrane system was designed to exploit the whole redox process of electrodes, in which the membrane cathode and anode were formed by carbon fibers doped with Fe and metal organic frameworks derived SnO, respectively. Propranolol (PRO) was used as a representative of PPCPs.
View Article and Find Full Text PDFWater disinfection is undoubtedly regarded as a critical step in ensuring the water safety for human consumption, and ozone is widely used as a highly effective disinfectant for the control of pathogenic microorganisms in water. Although the diminished ozone efficiencies in complex water matrices have been widely reported, the specific extent to which individual components of matrix act on the virus inactivation by ozone remains unclear, and effective methodologies to predict the comprehensive effects of various factors are needed. In this study, the decoupled impact of the intricate water matrix on the ozone inactivation of viruses was systematically investigated and assessed from a simulative perspective.
View Article and Find Full Text PDFAnaerobic digestion (AD) is a promising method to treat organic matter. However, AD performance was limited by the inefficient electron transfer and metabolism imbalance between acid-producing bacteria and methanogens. In this study, a novel binary electroactive material (FeO@biochar) with pseudocapacitance (1.
View Article and Find Full Text PDFHeterogeneous catalytic ozonation (HCO) is an effective technology for advanced wastewater treatment, while the influence of coexisting salts remains unclear and controversial. Here, we systematically explored the influence of NaCl salinity on the reaction and mass transfer of HCO through lab experiments, kinetic simulation, and computational fluid dynamics modeling, and proposed that the trade-off between reaction inhibition and mass transfer enhancement would affect the pollutants degradation pattern under varying salinity. The increase of NaCl salinity decreased ozone solubility and accelerated the futile consumption of ozone and hydroxyl radicals (OH), and the maximum OH concentration under 50 g/L salinity was only 23% of that without salinity.
View Article and Find Full Text PDFRaman spectra of two series of InAs/AlAs short-period superlattices were measured at room temperature to investigate the impact of strain on the phonon modes taking into consideration the confinement effect and interface mode. The evolution of strain in the InAs layer and the AlAs layer was studied in (InAs)/(AlAs) superlattices grown at various temperatures (400-550 °C). While the strain existed in the AlAs layer remained almost constant, the strain in the InAs layer varied significantly as the growth temperature increased from 500 to 550 °C.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2020
Simultaneous measurement of multi-physiological signals can provide effective diagnosis and therapeutic assessment of diseases. This paper reports a carbon nanotube (CNT) - Polydimethylsiloxane (PDMS) - based wearable device with piezo-resistive and voltage-sensing capabilities for simultaneously capturing wrist pulse pressure and cardiac electrical signal. The layout design of sensing elements in the device was guided by analyzing strain distribution and electric field distribution for minimizing the interference between wrist pulse and cardiac electric activity during measurement.
View Article and Find Full Text PDFBackground: Dysfunction of human respiratory and electro-cardiac activities could affect the ability of the heart to pump blood and the lungs to inhale oxygen. Thus, a device could simultaneously measure electro-cardiac signal and respiratory pressure could provide vital signs for predicting early warning of cardio-pulmonary function-related chronic diseases such as cardiovascular disease, and respiratory system disease.
Results: In this study, a flexible device integrated with piezo-resistive sensing element and voltage-sensing element was developed to simultaneously measure human respiration and electro-cardiac signal (including respiratory pressure, respiration frequency, and respiration rhythm; electro-cardio frequency, electro-cardio amplitude, and electro-cardio rhythm).
Sensors (Basel)
November 2019
Enrichment of cadmium ion (Cd) from the environment may lead to kidney disease and weakened immunity in the body. Current techniques are not convenient enough to measure Cd concentration in the environment due to low sensitivity and poor linear range. In this paper, a new measurement technique is proposed using a new sensing electrode made of nano-copper-enhanced carbon fiber.
View Article and Find Full Text PDF