Am J Physiol Gastrointest Liver Physiol
August 2023
Although midnolin has been studied for over 20 years, its biological roles in vivo remain largely unknown, especially due to the lack of a functional animal model. Indeed, given our recent discovery that the knockdown of midnolin suppresses liver cancer cell tumorigenicity and that this antitumorigenic effect is associated with modulation of lipid metabolism, we hypothesized that knockout of midnolin in vivo could potentially protect from nonalcoholic fatty liver disease (NAFLD) which has become the most common cause of chronic liver disease in the Western world. Accordingly, in the present study, we have developed and now report on the first functional global midnolin knockout mouse model.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) ranks worldwide as one of the most lethal cancers. In spite of the vast existing knowledge about HCC, the pathogenesis of HCC is not completely understood. Discovery of novel genes that contribute to HCC pathogenesis will provide new insights for better understanding and treating HCC.
View Article and Find Full Text PDFThe integration of cellular status with metabolism is critically important and the coupling of energy production and cellular function is highly evolutionarily conserved. This has been demonstrated in stem cell biology, organismal, cellular and tissue differentiation and in immune cell biology. However, a molecular mechanism delineating how cells coordinate and couple metabolism with transcription as they navigate quiescence, growth, proliferation, differentiation and migration remains in its infancy.
View Article and Find Full Text PDFHandb Exp Pharmacol
November 2021
WNT/β-catenin signaling plays fundamental roles in numerous developmental processes and in adult tissue homeostasis and repair after injury, by controlling cellular self-renewal, activation, division, differentiation, movement, genetic stability, and apoptosis. As such, it comes as no surprise that dysregulation of WNT/β-catenin signaling is associated with various diseases, including cancer, fibrosis, neurodegeneration, etc. Although multiple agents that specifically target the WNT/β-catenin signaling pathway have been studied preclinically and a number have entered clinical trials, none has been approved by the FDA to date.
View Article and Find Full Text PDFBackground: Collagen production by activated hepatic stellate cells (HSCs) to encapsulate injury is part of the natural wound-healing response in injured liver. However, persistent activation of HSCs can lead to pathological fibrogenesis. Such persistent HSC activation could be mediated by norepinephrine (NE), a reaction product of dopamine beta-hydroxylase (DBH).
View Article and Find Full Text PDFDifferential usage of Kat3 coactivators, CBP and p300, by β-catenin is a fundamental regulatory mechanism in stem cell maintenance and initiation of differentiation and repair. Based upon our earlier pharmacologic studies, p300 serine 89 (S89) is critical for controlling differential coactivator usage by β-catenin via post-translational phosphorylation in stem/progenitor populations, and appears to be a target for a number of kinase cascades. To further investigate mechanisms of signal integration effected by this domain, we generated p300 S89A knock-in mice.
View Article and Find Full Text PDFBackground: Although cyclic AMP-response element binding protein-binding protein (CBP)/β-catenin signaling is known to promote proliferation and fibrosis in various organ systems, its role in the activation of pancreatic stellate cells (PSCs), the key effector cells of desmoplasia in pancreatic cancer and fibrosis in chronic pancreatitis, is largely unknown.
Methods: To investigate the role of the CBP/β-catenin signaling pathway in the activation of PSCs, we have treated mouse and human PSCs with the small molecule specific CBP/β-catenin antagonist ICG-001 and examined the effects of treatment on parameters of activation.
Results: We report for the first time that CBP/β-catenin antagonism suppresses activation of PSCs as evidenced by their decreased proliferation, down-regulation of "activation" markers, e.
The hepatitis B X protein (HBx) plays a role in the epigenetic regulation of hepatitis B virus (HBV) replication. This study investigated the effects of HBx mutations on HBV transcription and the recruitment of HBx, histone acetyl-transferase P300 and histone deacetylase 1 (HDAC1) to circularized HBV DNA (which resembles covalently closed circular DNA [cccDNA]). Compared with wild type, majority of mutants had lower levels of intracellular HBV RNA (44-77% reduction) and secretory HBsAg (25-81% reduction), and 12 mutants had a reduction in intracellular encapsidated HBV DNA (33-64% reduction).
View Article and Find Full Text PDFNormal long-term repopulating somatic stem cells (SSCs) preferentially divide asymmetrically, with one daughter cell remaining in the niche and the other going on to be a transient amplifying cell required for generating new tissue in homeostatic maintenance and repair processes, whereas cancer stem cells (CSCs) favor symmetric divisions. We have previously proposed that differential β-catenin modulation of transcriptional activity via selective interaction with either the Kat3 coactivator CBP or its closely related paralog p300, regulates symmetric versus asymmetric division in SSCs and CSCs. We have previously demonstrated that SSCs that divide asymmetrically per force retain one of the dividing daughter cells in the stem cell niche, even when treated with specific CBP/β-catenin antagonists, whereas CSCs can be removed from their niche via forced stochastic symmetric differentiative divisions.
View Article and Find Full Text PDFAt the 2018 PancreasFest meeting, experts participating in basic research met to discuss the plethora of available animal models for studying exocrine pancreatic disease. In particular, the discussion focused on the challenges currently facing the field and potential solutions. That meeting culminated in this review, which describes the advantages and limitations of both common and infrequently used models of exocrine pancreatic disease, namely, pancreatitis and exocrine pancreatic cancer.
View Article and Find Full Text PDFBackground: The ancient and highly evolutionarily conserved Wnt signaling pathway is critical in nearly all tissues and organs for an organism to develop normally from embryo through adult. Wnt signaling is generally parsed into "canonical" or Wnt-β-catenin-dependent or "non-canonical" β-catenin-independent signaling. Even though designating Wnt signaling as either canonical or noncanonical allows for easier conceptual discourse about this signaling pathway, in fact canonical and non-canonical Wnt crosstalk regulates complex nonlinear networks.
View Article and Find Full Text PDFOver 400 million years ago, the evolution of vertebrates gave rise to a life cycle in which the organism began to live longer particularly as an adult. To accommodate such a longer lifespan, the organism underwent adaptation, developing a mechanism for long-lived cellular homeostasis. This adaptation required a population of long-lived relatively quiescent somatic stem cells (SSCs) along with a more proliferative differentiated daughter cell population, and was necessary to safeguard the genetic attributes with which SSCs were endowed.
View Article and Find Full Text PDFBackground: Although canonical Wnt signaling is known to promote tumorigenesis in pancreatic ductal adenocarcinoma (PDAC), a cancer driven principally by mutant , the detailed molecular mechanisms by which the Wnt effector β-catenin regulates such tumorigenesis are largely unknown. We have previously demonstrated that β-catenin's differential usage of the Kat3 transcriptional coactivator cyclic AMP-response element binding protein-binding protein (CBP) over its highly homologous coactivator p300 increases self-renewal and suppresses differentiation in other types of cancer.
Aim/methods: To investigate Wnt-mediated carcinogenesis in PDAC, we have used the specific small molecule CBP/β-catenin antagonist, ICG-001, which our lab identified and has extensively characterized, to examine its effects in human pancreatic cancer cells and in both an orthotopic mouse model and a human patient-derived xenograft (PDX) model of PDAC.
Background & Aims: Stearoyl-CoA desaturase (SCD) synthesizes monounsaturated fatty acids (MUFAs) and has been associated with the development of metabolic syndrome, tumorigenesis, and stem cell characteristics. We investigated whether and how SCD promotes liver fibrosis and tumor development in mice.
Methods: Rodent primary hepatic stellate cells (HSCs), mouse liver tumor-initiating stem cell-like cells (TICs), and human hepatocellular carcinoma (HCC) cell lines were exposed to Wnt signaling inhibitors and changes in gene expression patterns were analyzed.
Background: The lack of specificity of immunoassays for drugs of abuse testing (DAT), and concerns over its cost in conjunction with reflex confirmatory tests prompted us to investigate the combinatorial use of dried urine spot (DUS) and LC-MS/MS as an alternative.
Methods: The method development and validation were performed in accordance with the guidelines published by FDA and CLSI.
Results: In this study we established and validated the precision, accuracy, and linearity of our DUS-LC-MS/MS method, and assessed the recovery, interference, and carryover as well.
We are reporting qualitative and quantitative changes of the extracellular matrix (ECM) and associated receptor proteomes, occurring during the transition from liver fibrosis and steatohepatitis to hepatocellular carcinoma (HCC). We compared two mouse models relevant to human HCC: PDGFC transgenic (Tg) and Pten null mice, models of disease progression from fibrosis and steatohepatitis to HCC. Using mass spectrometry, we identified in the liver of both models proteins for 26 collagen-encoding genes, providing the first evidence of expression at the protein level for 16 collagens.
View Article and Find Full Text PDFBackground: Chemiluminescence immunoassay (CIA) is used to detect hepatitis C virus (HCV) antibody status on the basis of signal-to-cutoff (S/Co) ratios. Positive results of antibody to HCV (anti-HCV) are followed by either recombinant immunoblot assay (RIBA) to confirm anti-HCV positivity or reverse transcription (RT)-PCR to detect viremia. We hypothesized that by analyzing S/Co ratios, we could determine a strategy to reduce unnecessary supplementary testing in our population.
View Article and Find Full Text PDFBackground & Aims: Mechanisms underlying synergistic liver injury caused by alcohol and obesity are not clear. We have produced a mouse model of synergistic steatohepatitis by recapitulating the natural history of the synergism seen in patients for mechanistic studies.
Methods: Moderate obesity was induced in mice by 170% overnutrition in calories using intragastric overfeeding of high fat diet.
Unlabelled: We report a comprehensive and quantitative analysis of the mouse liver and plasma proteomes. The method used is based on extensive fractionation of intact proteins, further separation of proteins based on their abundance and size, and high-accuracy mass spectrometry. This analysis reached a depth in proteomic profiling not reported to date for a mammalian tissue or a biological fluid, with 7099 and 4727 proteins identified with high confidence in the liver and in the corresponding plasma, respectively.
View Article and Find Full Text PDF