Publications by authors named "Ke-di Cheng"

Peptide cyclization, a pivotal approach to modifying linear precursors of proteins and pepticles, has been used to enhance their biological activities and serum stabilities. Recently, sortase A (SrtA) from Staphyloccus aureus becomes a promising new technology for efficiently incorporating site specific modifications into proteins, conjugating the cell surface and cyclizing the linear peptides. In this study, we constructed two recombinant expression systems, one with chitin binding domain and the other with six-histidine tag and chitin binding domain on the N-terminal of SrtA, separately.

View Article and Find Full Text PDF

Three cyclotides were isolated from the whole plant of Viola yedoensis in this study. The two, vary peptide E and cycloviolacin Y5, were previously reported, and a novel cycloviolacin VY1 was characterized according to the interpretation of MS/MS fragmentation of peptides which were produced from the reduced and alkylated parent peptide with the digestion of Endo Lys-C, trypsin and chymotrypsin, separately. The stability of remarkable resistance to proteolytic degradation by trypsin and chymotrypsin, and that of thermal denaturation was confirmed again.

View Article and Find Full Text PDF

Synthetic biology of natural products is the design and construction of new biological systems by transferring a metabolic pathway of interest products into a chassis. Large-scale production of natural products is achieved by coordinate expression of multiple genes involved in genetic pathway of desired products. Promoters are cis-elements and play important roles in the balance of the metabolic pathways controlled by multiple genes by regulating gene expression.

View Article and Find Full Text PDF

Abstract: The first-line drug artemisinin is widely used against malaria. Commercially available artemisinin is extracted from plants. However, the lack of sufficient raw material, artemisinin and the cost associated with the drug's manufacture have limited the supply of ACT to most malaria sufferers in the Developing World.

View Article and Find Full Text PDF

The synthetic biology matures to promote the heterologous biosynthesis of the well-known drug paclitaxel that is one of the most important and active chemotherapeutic agents for the first-line clinical treatment of cancer. This review focuses on the construction and regulation of the biosynthetic pathway of paclitaxel intermediates in both Escherichia coli and Saccharomyces cerevisiae. In particular, the review also features the early efforts to design and overproduce taxadiene and the bottleneck of scale fermentation for producing the intermediates.

View Article and Find Full Text PDF

Paclitaxel, a natural antitumor compound, is produced by yew trees at very low concentrations, causing a worldwide shortage of this important anticancer medicine. These plants also produce significant amounts of 7-β-xylosyl-10-deacetyltaxol, which can be bio-converted into 10-deacetyltaxol for the semi-synthesis of paclitaxel. Some microorganisms can convert 7-β-xylosyl-10-deacetyltaxol into 10-deacetyltaxol, but the bioconversion yield needs to be drastically improved for industrial applications.

View Article and Find Full Text PDF

Human enterovirus 71 (EV71) is one of the major etiological agents for the hand, foot, and month disease (HFMD) and is causing frequent, widespread occurrence in the mainland of China. The single positive-stranded RNA genome of EV71 is translated into a single polyprotein which is autocleavaged into structural and nonstructural proteins. The functions of many nonstructural proteins characterized in the life cycle of virus are potential targets for blocking viral replication.

View Article and Find Full Text PDF

Several molecular techniques were employed to document the bacterial diversity associated with the marine sponge Gelliodes carnosa. Cultivation-dependent and cultivation-independent methods were used to obtain the 16S rRNA gene sequences of the bacteria. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the bacterial community structure was highly diverse with representatives of the high G + C Gram-positive bacteria, cyanobacteria, low G + C Gram-positive bacteria, and proteobacteria (α-, β-, and γ-), most of which were also found in other marine environments, including in association with other sponges.

View Article and Find Full Text PDF

NADPH-cytochrome P450 reductase (CPR), a partner for P450 monooxygenases, serves as the electron donor to almost all eukaryotic cytochrome P450s. One cDNA (TchCPR) encoding cytochrome P450 reductase of T. chinensis was isolated from callus cells.

View Article and Find Full Text PDF

The cyclotides are a family of cyclic "mini" proteins that occur in Violaceae, Rubiaceae and Cucurbitaceae plant families and contain a head-to-tail cyclic backbone and a cystine knot arranged by three disulfide bonds. To study the natural cyclotides of V tianshanica, dried herb was extracted with 50% ethanol, and the concentrated aqueous extract was subjected to a solvent-solvent partitioning between water and hexane, ethyl acetate and n-butanol, separately. The n-butanol extract containing cyclotides was subjected to column chromatography over Sephadex LH-20, eluted with 30% methanol.

View Article and Find Full Text PDF

Influenza A/H1N1 virus-encoded nonstructural, or NS1, protein inhibits the 3'-end processing of cellular pre-mRNAs by binding the cellular protein: the 30-kDa subunit of CPSF (cleavage and polyadenylation specificity factor, CPSF30). CPSF30 binding site of the NS1 protein is a potential target for the development of drugs against influenza A/H1N1 virus. A yeast two-hybrid screening system was constructed and used for screening Chinese medicines that inhibit the interaction of the A/H1N1 flu NS1 protein and human CPSF30 protein.

View Article and Find Full Text PDF

The gene encoding squalene synthase (GfSQS) was cloned from Fusarium fujikuroi (Gibberella fujikuroi MP-C) and characterized. The cloned genomic DNA is 3,267 bp in length, including the 5'-untranslated region (UTR), 3'-UTR, four exons, and three introns. A noncanonical splice-site (CA-GG, or GC-AG) was found at the first intron.

View Article and Find Full Text PDF

Amorpha-4,11-diene synthase (ADS) can convert farnesyl pyrophosphate (FPP) to amorpha-4, 11-diene, a precursor of artemisinin. ADS plays an important role in the biosynthesis of artemisinin. This review summarizes the molecular biology and metabolic engineering study of ADS in recent years.

View Article and Find Full Text PDF

Plasmid-carrying Saccharomyces cerevisia (W303-1B[pYeDP60/G/ADS]) and genome-transformed S. cerevisia (W303-1B[rDNA:ADS]), both harboring amorpha-4,11-diene synthase (ADS) gene were constructed to investigate the production of amorpha-4,11-diene. The recombinant plasmid pYeDP60/G/ADS that harbors the ADS gene was transformed into S.

View Article and Find Full Text PDF

The technology of liquid fermentation for producing the recombinant analgesic peptide BmK AngM1 from Buthus martensii Karsch in Pichia pastoris was studied by single-factor and orthogonal test. The results showed that the optimal culture conditions were as follows: 1.2% methanol, 0.

View Article and Find Full Text PDF

Dipeptidyl peptidase (DPP) IV inhibitors provide a new strategy for the treatment of type 2 diabetes. Human DPP-IV gene was cloned from differentiated Caco-2 cells and expressed in Pichia pastoris. The recombinant enzyme was used in a new system for screening of DPP-IV inhibitors.

View Article and Find Full Text PDF

X5 protein is one of the putative unknown proteins of SARS-CoV. The recombinant protein has been successfully expressed in E. coli in the form of insoluble inclusion body.

View Article and Find Full Text PDF

The expression plasmid pET32CPS harboring SmCPS gene was transformed into E. coli BL21 trxB (DE3) resulting in recombinant strain E. coli [pET32CPS].

View Article and Find Full Text PDF

Phylogenetic relationship between Paecilomyces hepiali and Cordyceps sinensis was studied by analyzing the sequence of rDNA-ITS. The samples of C. sinensis were collected from Hualong County in Qinghai Province and Kangding County in Sichuan Province in May and June, respectively.

View Article and Find Full Text PDF

The gene encoding amorpha-4, 11-diene synthase was cloned from Artemisia annua L. Other two genes encoding the FPP synthase (FPPS) and HMG-CoA reductase (HMGR) were cloned from Saccharomyces cerevisiae. The cloned cDNAs were confirmed by DNA sequencing.

View Article and Find Full Text PDF

Objective: Cloning and bioinformatics analysis of P450 cDNA in Artemisia annua.

Method: A P450 cDNA gene was cloned from A. annua by RT-PCR.

View Article and Find Full Text PDF

In previous studies a variety of novel accessory genes has been identified that were interspersed among the structural genes of the SARS-CoV (severe acute respiratory syndrome coronavirus) genome. The predicted unknown proteins (PUPs) encoded by the accessory genes, which are considered to be unique to the SARS-CoV genome, might play important roles in the SARS-CoV infection. Two of these genes, called ORF10 and X5, were synthesized and introduced into E.

View Article and Find Full Text PDF

According to previous studies of SARS-CoV (Severe acute respiratory syndrome coronavirus), a variety of novel accessory genes have been identified in SARS-CoV genome, which were interspersed the structural genes of SARS-CoV and considered to be unique to the SARS-CoV genome. The predicted unknown proteins (PUPs) encoded by the accessory genes might play important roles in the SARS-CoV infection. Three of those genes, called X4, X5 and ORF10, were synthesized and introduced into E.

View Article and Find Full Text PDF

Taxol is one of the most potent chemotherapeutic agents known, showing excellent activity against a range of cancers. In addition to anticancer, taxol has the effect of preventing graft arteriosclerosis, antiscaring formation and inhibiting angiogenesis. There are five possible routes to industrialize taxol production: isolation from the bark of the yew species, total synthesis, semisynthesis, tissue or cell culture, endophytic fungal fermentation and metabolism engineering.

View Article and Find Full Text PDF

1-Hydroxy-2,3,5-trimethoxyxanthone (1), one of the major xanthone derivatives isolated from Halenia elliptica, was biotransformed by two fungi, Trichothecium roseum and Paecilomyces marquandii. Transformation of 1 by T. roseumgave 1,5-dihydroxy-2,3-dimethoxyxanthone (2), 5-O-sulfate-1-hydroxy-2,3-dimethoxyxanthone (3), 5-O-sulfate-1-hydroxy-2,3,7-trimethoxyxanthone (4), 5-O-beta-ribofuranosyl-1-hydroxy-2,3-dimethoxyxanthone (5), and 1,5,6-trihydroxy-2,3-dimethoxyxanthone (6).

View Article and Find Full Text PDF