Objectives: To develop and compare noninvasive models for differentiating between combined hepatocellular-cholangiocarcinoma (cHCC-CCA) and HCC based on serum tumor markers, contrast-enhanced ultrasound (CEUS), and computed tomography (CECT).
Methods: From January 2010 to December 2021, patients with pathologically confirmed cHCC-CCA or HCC who underwent both preoperative CEUS and CECT were retrospectively enrolled. Propensity scores were calculated to match cHCC-CCA and HCC patients with a near-neighbor ratio of 1:2.
In the world, nonalcoholic fatty liver disease (NAFLD) accounts for majority of diffuse hepatic diseases. Notably, substantial liver fat accumulation can trigger and accelerate hepatic fibrosis, thus contributing to disease progression. Moreover, the presence of NAFLD not only puts adverse influences for liver but is also associated with an increased risk of type 2 diabetes and cardiovascular diseases.
View Article and Find Full Text PDFBackground: Contrast-enhanced ultrasound (CEUS) can be used to diagnose focal liver lesions (FLLs) in children. The America College of Radiology developed the CEUS liver imaging reporting and data system (LI-RADS) for standardizing CEUS diagnosis of FLLs in adult patients. Until now, no similar consensus or guidelines have existed for pediatric patients to improve imaging interpretation as adults.
View Article and Find Full Text PDFAchieving a desirable combination of solid-like properties and fast self-healing is a great challenge due to slow diffusion dynamics. In this work, we describe a design concept that utilizes weak but abundant coordination bonds to achieve this objective. The designed PDMS polymer, crosslinked by abundant Zn(II)-carboxylate interactions, is very strong and rigid at room temperature.
View Article and Find Full Text PDFCoordination bonds are effective for constructing highly efficient self-healing materials as their strength is highly tunable. To design self-healing polymers with better performance, it is important to get a profound understanding of the structure-property relationships. However, this is challenging for self-healing polymers based on coordination bonds, because many parameters, such as bond energy, bond dynamics, and coordination number will have an essential effect on the mechanical and self-healing properties of the polymer.
View Article and Find Full Text PDF