Publications by authors named "Ke-Tao Ma"

Background: Pulmonary arterial hypertension (PAH) is a worldwide challenging disease characterized by progressive elevation of pulmonary artery pressure. The proliferation, migration and phenotypic transformation of pulmonary smooth muscle cells are the key steps of pulmonary vascular remodeling. Quercetin (3,3', 4', 5, 6-pentahydroxyflavone, Que) is a natural flavonol compound that has antioxidant, anti-inflammatory, anti-tumor and other biological activities.

View Article and Find Full Text PDF

Objective: To investigate whether probenecid (PROB) could improve the proliferation and migration ability of rats' pulmonary artery smooth muscle cells induced by platelet-derived growth factor-BB (PDGF-BB).

Methods: Primary pulmonary artery smooth muscle cells (PASMCs) of SD rats were cultured , and were randomly divided into control group (CON group), PDGF-BB group (10 ng/ml PDGF-BB treatment for 24 h) and PDGF-BB+PROB group (10 ng/ml PDGF-BB and 200 μmol/L PROB treatment for 24 h, PROB is a specific blocker of pannexin-1). CCK-8 method was used to select the suitable intervention concentrations of PROB and PDGF-BB, and to detect the proliferation of PASMCs in each group.

View Article and Find Full Text PDF

This study aimed to investigate the differential expression profiles of microRNAs (miRNAs) in peripheral blood lymphocytes between patients with essential hypertension and healthy individuals in Xinjiang Kazakh and to provide insight into the mechanism involved in the pathogenesis of hypertension in this ethnic group. From April 2016 to May 2019, 30 Kazakh patients with essential hypertension in the inpatient and outpatient departments of Cardiology, First Affiliated Hospital of Shihezi University were used as the hypertension group; 30 healthy Kazakh patients were used as the control group. The miRNA expression profiles in peripheral blood lymphocytes of 6 Kazakh hypertensive patients and 6 matched healthy individuals were compared, and the differentially expressed miRNAs were analyzed by cluster analysis, GSEA enrichment analysis, target gene prediction, target gene annotation and other bioinformatics analyses.

View Article and Find Full Text PDF

The investigation of effective therapeutic drugs for pulmonary hypertension (PH) is critical. KIR2.1 plays crucial roles in regulating cell proliferation and migration, and vascular remodeling.

View Article and Find Full Text PDF

Autophagy and apoptosis are intertwined, and their relationship involves complex cross-talk. Whether the activation and inhibition of autophagy protect or damage neurons in the central nervous system has been a matter of longstanding controversy. We investigated the effect of autophagy on the apoptosis of cortical neurons after oxygen- and glucose-deprivation/reoxygenation (OGD/R) injury in vitro and found that protective mechanism activation was the predominant response to enhanced autophagy activation and increased autophagic flux.

View Article and Find Full Text PDF

It is widely accepted that the stria vascularis (SV) in cochlea plays a critical role in the generation of endocochlear potential (EP) and the secretion of the endolymph. 17β-estradiol (E2) is the most potent and abundant endogenous estrogen during the premenopausal period, thus, considered as the reference estrogen. This study aimd to investigate the protective effect of E2 by promoting the expression of vascular endothelial growth factor (VEGF) and thus promoting the vascular regeneration of the SV in elderly mice.

View Article and Find Full Text PDF

The autophagy/apoptosis interaction has always been a focus of study in pathogenicity models. Neuritin is a neurotrophic factor that is highly expressed primarily in the central nervous system. Our previous study revealed that it protects against apoptosis in cortical neurons subjected to oxygen-glucose deprivation (OGD)/reoxygenation (OGD/R), and later animal experiments revealed that it can increase the expression of the autophagy-related protein LC3.

View Article and Find Full Text PDF

Background: Recent studies have shown that endothelin-1 and angiotensin II (AngII) can increase gap junctional intercellular communication (GJIC) by activating Mitogen-activated protein kinases (MAPKs) pathway. However, not only the precise interaction of AngII with Connexin43(Cx43) and the associated functions remain unclear, but also the regulatory role of Cx43 on the AngII-mediated promotion proliferation and migration of VSMCs is poorly understood.

Material And Methods: Our research applicated pressure myography measurements, immunofluorescence and Western blot analyses to investigate the changes in physiological indicators in spontaneously hypertensive rats (SHRs) and AngII-stimulated proliferation and migration of A7r5 SMCs(Rat vascular smooth muscle cells).

View Article and Find Full Text PDF

The current research hot spot in the field of autophagic flux is to explain and alleviate disease from the perspective of autophagy. A highly sophisticated, sensitive, quantifiable and comprehensive method is required to accurately determine the dynamic process of autophagic flux. There are very few methods in neuroscience that specifically examine autophagic flux.

View Article and Find Full Text PDF

Our aim was to investigate the effects of the protein expression and the function of sodium, potassium, and chloride co-transporter (NKCC1) in the dorsal root ganglion (DRG) after activation of transient receptor potential vanilloid 1 receptor (TRPV1) in capsaicin-induced acute inflammatory pain and the possible mechanism of action. Male Sprague-Dawley rats were randomly divided into control, capsaicin, and inhibitor groups. The expression and distribution of TRPV1 and NKCC1 in rat DRG were observed by immunofluorescence.

View Article and Find Full Text PDF

Objective: To analyze the correlation between connexin 43 (Cx43) and the expression of P16 and P21, aging-related proteins, and to investigate the possible role of Cx43 in the development of cell senescence with an aging model prepared by D-galactose (D-gal) intervention in the vascular smooth muscle cells (VSMCs) of guinea pig spiral modiolar artery (SMA).

Methods: The VSMCs of guinea pig SMA were cultured with the adhesion method, and the markers of VSMCs were detected with immunofluorescence technique. The experiment has a control group, a D-gal group, and a group that received D-gal and gap junction agonist AAP10 intervention, hereafter referred to as the AAP10 group.

View Article and Find Full Text PDF

To observe the effects of estrogen on cochlear spiral ganglia cell apoptosis in aged C57BL/6J mice, and to explore the possible mechanism of estrogen's protective effects on senile deafness. Forty C57BL/6J mice were divided into the following four groups (10 mice/group): 3 m group (3 months old group), 12 m group (12 months old sham operation group); In the 12 m OVX group (ovariectomized at 12 months), bilateral oophorectomy was performed at the age of 9 months and normal feeding was performed until the age of 12 months.The 12m OVX+E2 group (estrogen intervention group) underwent bilateral oophorectomy at 9 months of age.

View Article and Find Full Text PDF

Primary cultured cochlear stria vascularis endothelial cells (ECs) of guinea pig were used to investigate the expression changes of TMEM16A and its effect on apoptosis and senescence of ECs in the cochlear stria vascularis. Primary cultured ECs in the cochlear stria vascularis were used to establish aging models according to CCK-8 and SA-β-galactosidase. Senescent cells were randomly divided into senescent group (P12), DMSO group (P12+DMSO), T16Ainh-A01 group (P12+T16Ainh-A01).

View Article and Find Full Text PDF

Objective: To investigate the expression and electrophysiological characteristics of calcium-activated chlorine channel anoctamin-1 (ANO1) protein during the differentiation of cardiac fibroblasts (CFs) into myofibroblasts (MFs), and to elucidate the role of ANO1 in myocardial fibrosis.

Methods: The primary CFs from neonatal rats were isolated and the cells differentiated into MFs by subculture. The Ca-activated Cl current () in CFs and MFs were measured by whole-cell patch clamp, and the expressions of ANO1, α-smooth muscle actin(α-SMA)and vimentin in CFs and MFs were detected by immunofluorescence assay and Western blot, respectively.

View Article and Find Full Text PDF

Nav1.7 is closely associated with neuropathic pain. Hydrogen sulfide (H2S) has recently been reported to be involved in numerous biological functions, and it has been shown that H2S can enhance the sodium current density, and inhibiting the endogenous production of H2S mediated by cystathionine β‑synthetase (CBS) using O‑(carboxymethyl)hydroxylamine hemihydrochloride (AOAA) can significantly reduce the expression of Nav1.

View Article and Find Full Text PDF

17β-estradiol plays a role in pain sensitivity, analgesic drug efficacy, and neuropathic pain prevalence, but the underlying mechanisms remain unclear. Here, we investigated whether voltage-gated chloride channel-3 (ClC-3) impacts the effects of 17β-estradiol (E2) on spared nerve injury (SNI)-induced neuropathic pain in ovariectomized (OVX) female Sprague Dawley rats that were divided into OVX, OVX + SNI, OVX + SNI + E2, OVX + SNI + E2 + DMSO (vehicle, dimethyl sulfoxide), or OVX + SNI + E2+Cltx (ClC-3-blocker chlorotoxin) groups. Changes in ClC-3 protein expression were monitored by western blot analysis.

View Article and Find Full Text PDF

Objective: To investigate the effects of calcium-sensitive receptors (CaSR) on the expression of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) and cortisol concentration in a neonatal mouse model of persistent pulmonary hypertension (PPH).

Methods: Fifty-six newborn C57BL/6 mice were randomly divided into a control group (n=14), a PPH group (n=14), an agonist group (n=14), and an inhibitor group (n=14). The mice in the PPH, agonist, and inhibitor groups were exposed to a 12% oxygen concentration, and the agonist group and inhibitor group were given CaSR agonist (GdCl3, 16 mg/kg) and CaSR antagonist (NPS2390, 1 mg/kg) intraperitoneally once a day, respectively.

View Article and Find Full Text PDF

The adaptive immune response mediated by T lymphocytes is a well‑established factor in the pathogenesis of pulmonary inflammation. Changes in the expression of various connexins (Cxs) or disruption of connexin‑mediated cellular communication in T lymphocytes contribute to inflammation or tissue remodeling. The aim of the present study was to investigate the potential therapeutic value of blocking Cxs in a monocrotaline (MCT)‑induced pulmonary inflammation rat model.

View Article and Find Full Text PDF

Sodium-potassium-chloride cotransporter 1 (NKCC1) and potassium-chloride cotransporter 2 (KCC2) are associated with the transmission of peripheral pain. We investigated whether the increase of NKCC1 and KCC2 is associated with peripheral pain transmission in dorsal root ganglion neurons. To this aim, rats with persistent hyperalgesia were randomly divided into four groups.

View Article and Find Full Text PDF

The aim of this study was to investigate whether G protein-coupled estrogen receptor (GPER) could alleviate hippocampal neuron injury under cerebral ischemia-reperfusion injury (CIRI) by acting on endoplasmic reticulum stress (ERS). The CIRI animal model was established by middle cerebral artery occlusion (MCAO). Female ovariectomized (OVX) Sprague-Dawley (SD) female rats were randomly divided into 4 groups: control, ischemia-reperfusion injury (MCAO), vehicle (MCAO+DMSO), and GPER-specific agonist G1 (MCAO+G1) groups.

View Article and Find Full Text PDF

The present study was designed to investigate the expression and function of transmembrane protein 16 (TMEM16A), a calcium‑activated chloride channel (CaCC), in the stria vascularis (SV) of the cochlea of guinea pigs at different ages, and to understand the role of CaCCs in the pathogenesis of presbycusis (age‑related hearing loss), the most common type of sensorineural hearing loss that occurs with natural aging. Guinea pigs were divided into the following groups: 2 weeks (young group), 3 months (youth group), 1 year (adult group), D‑galactose intervention (D‑gal group; aging model induced by subcutaneous injection of D‑galactose) and T16Ainh‑A01 (intraperitoneal injection of 50 µg/kg/day TMEM16A inhibitor T16Ainh‑A01 for 2 weeks). Differences in the hearing of guinea pigs between the various age groups were analyzed using auditory brainstem response (ABR), and immunofluorescence staining was performed to detect TMEM16A expression in the SV and determine the distribution.

View Article and Find Full Text PDF

The present study was designed to examine whether Ramipril (an inhibitor of angiotensin-converting enzyme) affected spontaneous hypertension-induced injury of cerebral artery by regulating connexin 43 (Cx43) expression. Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) were randomly divided into WKY, WKY + Ramipril, SHR, and SHR + Ramipril groups (n = 8). The arterial pressure was monitored by the tail-cuff method, and vascular function in basilar arteries was examined by pressure myography.

View Article and Find Full Text PDF

Gap junctions (GJs) formed by connexins (Cxs) in T lymphocytes have been reported to have important roles in the T lymphocyte‑driven inflammatory response and hypertension‑mediated inflammation. Estrogen has a protective effect on cardiovascular diseases, including hypertension and it attenuates excessive inflammatory responses in certain autoimmune diseases. However, the mechanisms involved in regulating the pro‑inflammatory response are complex and poorly understood.

View Article and Find Full Text PDF

Objective: To study the effect of calcium-sensitive receptors (CaSR) on the expression of endothelial nitric oxide synthase (eNOS) and the concentration of nitric oxide (NO) in a neonatal mouse model of persistent pulmonary hypertension (PPH).

Methods: Eighty neonatal C57BL/6 mice were randomly divided into control, PPH, agonist and antagonist groups. The control group was exposed to air, and the other three groups were exposed to 12% oxygen.

View Article and Find Full Text PDF

Transmembrane member 16A (TMEM16A) is involved in many physiological functions, such as epithelial secretion, sensory conduction, nociception, control of neuronal excitability, and regulation of smooth muscle contraction, and may be important in peripheral pain transmission. To explore the role of TMEM16A in the persistent hyperalgesia that results from chronic constriction injury-induced neuropathic pain, a rat model of the condition was established by ligating the left sciatic nerve. A TMEM16A selective antagonist (10 μg T16Ainh-A01) was intrathecally injected at L5-6.

View Article and Find Full Text PDF