Amid the rapid development of modern society, the widespread use of plastic products has led to significant environmental issues, including the accumulation of non-degradable waste and extensive consumption of non-renewable resources. Developing healable, recyclable, bio-based materials from abundant renewable resources using diverse dynamic interactions attracts increasing global attention. However, achieving a good balance between the self-healing capacity and mechanical performance, such as strength and toughness, remains challenging.
View Article and Find Full Text PDFEnergy and environmental issues have increasingly garnered significant attention for sustainable development. Flexible and shape-stable phase change materials display great potential in regulation of environmental temperature for energy saving and human comfort. Here, inspired by the water absorption behavior of salt-tolerant animals and plants in salinity environment and the Hofmeister theory, highly stable phase change salogels (PCSGs) are fabricated through in situ polymerization of hydrophilic monomers in molten salt hydrates, which can serve multiple functions including thermal management patches, smart windows, and ice blocking coatings.
View Article and Find Full Text PDFBiodegradable polymers with shape memory effects (SMEs) offer promising solutions for short-term medical interventions, facilitating minimally invasive procedures and subsequent degradation without requiring secondary surgeries. However, achieving a good balance among desirable SMEs, mechanical performance, degradation rate, and bioactivities remains a significant challenge. To address this issue, we established a strategy to develop a versatile biodegradable polyurethane (PPDO-PLC) with tunable hierarchical structures via precise chain segment control.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2023
The complexity of surgical treatments for large-area soft tissue injuries makes placing large implants into injury sites challenging. Aliphatic polyesters are often used for scaffold preparation in tissue engineering owing to their excellent biodegradability and biocompatibility. Scaffolds with shape-memory effect (SME) can also avoid large-volume trauma during the implantation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2023
Bone tissue engineering involving scaffolds is recognized as the ideal approach for bone defect repair. However, scaffold materials exhibit several limitations, such as low bioactivity, less osseointegration, and poor processability, for developing bone tissue engineering. Herein, a bioactive and shape memory bone scaffold was fabricated using the biodegradable polyester copolymer's four-dimensional fused deposition modeling.
View Article and Find Full Text PDFNumerous biological systems in nature provide much inspiration for humanity to master diverse coloration strategies for creating stimuli-responsive materials and display devices, such as to access gorgeous structural colors from well-defined photonic structures. Cholesteric liquid crystals (CLCs) are a fascinating genre of photonic materials displaying iridescent colors responsive to circumstance changes; however, it is still a big challenge to design materials with broadband color variation as well as good flexibility and freestanding capacity. Herein, we report a feasible and flexible strategy to fabricate cholesteric liquid-crystal networks (CLCNs) with precise colors across the entire visible spectrum through molecular structure tailoring and topology engineering and demonstrate their application as smart displays and rewritable photonic paper.
View Article and Find Full Text PDFA novel poly(epsilon-caprolactone) (PCL) supramolecular network exhibiting shape-memory behavior was successfully constructed with pendant UPy units that are highly able to dimerize. The dynamic network was obtained by a simple and versatile strategy consisting of chain-extension reaction between α,ω-dihydroxyoligoPCL and hydroxylated UPy units in the presence of hexamethylene diisocyanate as a coupling agent and further intermolecular dimerization of the UPy along the polyurethane backbone. H NMR analyses confirmed the dynamic features of the system, and DMTA in tensile mode was investigated to assess the SMP properties.
View Article and Find Full Text PDFRecently, charge transfer (CT) interactions have received attention for the fabrication of supramolecular architectures due to their inherent compatibilities, directional nature and solvent tolerance. In this study, we report a shape-memory dynamic network constructed by the CT interaction between π-electron-rich naphthalene embedded in poly(ethylene glycol) (PEG-Np) and π-electron-poor six-arm methyl-viologen-ended poly(ethylene glycol) (PEG-MV), which was verified by ultraviolet-visible spectroscopy (UV-vis), fluorescence spectra and swelling tests. Interestingly, the mechanical properties of this CT complex were dramatically enhanced compared with the control without CT interaction.
View Article and Find Full Text PDFHerein, we report a novel thermal/photoresponsive shape-memory polyurethane network with a pendant azobenzene group by utilizing its anisotropic-isotropic phase transitions and photoresponsive feature concurrently. To achieve this goal, the side-chain liquid crystalline polyurethane networks based on the pendant azobenzene group [SCLCPU(AZO)-Ns] were developed in a well-defined architecture. The smectic C nature of an LC phase in the polyurethane networks was confirmed by differential scanning calorimetry, polarized optical microscopy, and one-dimensional and two-dimensional wide-angle X-ray diffraction.
View Article and Find Full Text PDFRenin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway both play important roles in carcinogenesis, but the interplay of renin-angiotensin system and adenosine monophosphate-activated protein kinase in carcinogenesis is not clear. In this study, we researched the interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase in renal carcinogenesis of uninephrectomized rats. A total of 96 rats were stratified into four groups: sham, uninephrectomized, and uninephrectomized treated with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker.
View Article and Find Full Text PDFMultistimuli-responsive shape-memory polymers are highly desirable in various applications, and numerous modes have been developed in recent years. However, most of them need to reprogram before they are ready to respond to another stimulus while one is triggered. Here, a new strategy is developed to achieve dual-stimuli-responsive triple-shape memory with non-overlapping effect in one programming cycle.
View Article and Find Full Text PDFJ Renin Angiotensin Aldosterone Syst
October 2016
Introduction: The renal renin-angiotensin system (RAS) and the ultrasensitive energy sensor AMP-activated protein kinase (AMPK) have been implicated in normal and aberrant states of the kidney, but interaction between the RAS and AMPK remains unknown.
Methods: Ninety-six rats were stratified into four groups: sham, uninephrectomised, uninephrectomised rats treated with the angiotensin-converting enzyme inhibitor lisinopril or the angiotensin receptor blocker losartan. Histopathological examination at 9 months post-operation and biochemical measurements at 3, 6 and 9 months were performed for changes in renal structure and function.
Membranous glomerulonephritis (MGN) represents an immunologically mediated disease characterized by deposition of immune complexes in the glomerular subepithelial space. Persistent proteinuria at diagnosis predicts poor prognosis. Pregnancy with MGN is a risk of fetal loss and may worsen maternal renal function.
View Article and Find Full Text PDFA novel light-induced shape-memory material based on poly(l-lactide)-poly(ethylene glycol) copolymer is developed successfully by dangling the photoresponsive anthracene group on the PEG soft segment selectively. For synthesis strategy, the preprepared photoresponsive monomer N,N-bis(2-hydroxyethyl)-9-anthracene-methanamine (BHEAA) is first embedded into PEG chains; then, we couple this anthracene-functionalized PEG precursor with PLA precursor to result in PLA-PEG-A copolymer. The composition of target product can be well-defined by simply adjusting the feed ratio.
View Article and Find Full Text PDFTreatment of acquired immunodeficiency syndrome (AIDS) currently relies on the use of antiretroviral drugs. Little is known about Chinese herbal medicine (CHM) outcomes in patients living with AIDS. We conducted a cohort study to investigate long-term survival among CHM-treated AIDS patients.
View Article and Find Full Text PDFFractional crystallization, homogeneous nucleation of poly(ethylene glycol) (PEG) segment, and self-nucleation behavior of PEG segment within miscible double crystalline poly(butylene succinate)-poly(ethylene glycol) (PBSEG) multiblock copolymers with different composition and segment chain length were studied by differential scanning calorimetry (DSC). Surface morphology of PBSEG10K with different PEG content was investigated by atomic force microscope (AFM). Different from di- or triblock copolymers, the microstructure and confinement of PEG dispersed phase in PBS matrix phase highly depends on chain length and sequence as well as segment content.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
February 2011
PPDO was successfully electrospun into continuous, ultrafine fibers by using DMSO as solvent for the first time. The concentration of PPDO in DMSO and the electrospinning temperature were optimized. PPDO/LAP nanocomposites were also electrospun in DMSO.
View Article and Find Full Text PDFA novel environmentally friendly thermoplastic soy protein/polyester blend was successfully prepared by blending soy protein isolate (SPI) with poly(butylene succinate) (PBS). To improve the compatibility between SPI and PBS, the polyester was pretreated by introducing different amounts of urethane and isocyanate groups before blending. The blends containing pretreated PBS showed much finer phase structures because of good dispersion of polyester in protein.
View Article and Find Full Text PDFAmphiphilic biodegradable graft copolymer, poly(vinyl alcohol)-graft-poly(p-dioxanone) (PVA-g-PPDO), was used to prepare a new biodegradable material by blending with poly(p-dioxanone) (PPDO). The in vitro degradation properties of the copolymer and blends with different contents of PVA-g-PPDO were studied in phosphate buffer at 37 degrees C. The degradation processes of the PVA-g-PPDO and its blends with the PPDO were monitored by weight loss, viscosimetry, water uptake, differential scanning calorimetry (DSC), and scanning electron microscopy.
View Article and Find Full Text PDF