ACS Appl Mater Interfaces
April 2020
A critical factor hampering the deployment of fuel-flexible, low-temperature solid oxide fuel cells (LT-SOFCs) is the long-term stability of the electrode in different gas environments. Specifically, for state-of-the-art Ni-cermet anodes, reduction/oxidation (redox) cycles during fuel-rich and fuel-starved conditions cause a huge volume change, eventually leading to cell failure. Here, we report a robust redox-stable SrFeCoMoO (SFCM)/CeGdO ceramic anode-supported LT-SOFC with high performance and remarkable redox stability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2018
Exploitation of alternative anode materials for low-temperature solid oxide fuel cells (LT-SOFCs, 350-650 °C) is technologically important but remains a major challenge. Here we report a potential ceramic anode YCaCrCu O ( x = 0, 0.05, 0.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
May 2009
Two homochiral MOFs, (CBQ)CuI3(CN)3Br (1) and (CBC)CuI2.5(CN)2Br1.5 (2), were prepared by the solvothermal reaction of CuCN with N-4-cyanobenzyl quinidinium bromide (CBQ-Br) and N-4-cyanobenzylcinchonidinium bromide (CBC-Br).
View Article and Find Full Text PDF