Publications by authors named "Ke-Huan Chow"

Article Synopsis
  • The emergence of CRISPR and molecular tools allows for the mapping of cell lineages via induced DNA mutations, with the potential to apply this method to more complex organisms in the future.
  • A DREAM challenge was organized to test the performance of lineage reconstruction algorithms using both real data from C. elegans and simulated data from Mus musculus, comparing 22 different approaches.
  • Some methods showed strong performance, but structural challenges in the lineage trees affected results; using smaller sub-trees to train algorithms was beneficial for improving the accuracy of larger tree reconstructions.
View Article and Find Full Text PDF

During multicellular development, spatial position and lineage history play powerful roles in controlling cell fate decisions. Using a serine integrase-based recording system, we engineered cells to record lineage information in a format that can be read out in situ The system, termed integrase-editable memory by engineered mutagenesis with optical in situ readout (intMEMOIR), allowed in situ reconstruction of lineage relationships in cultured mouse cells and flies. intMEMOIR uses an array of independent three-state genetic memory elements that can recombine stochastically and irreversibly, allowing up to 59,049 distinct digital states.

View Article and Find Full Text PDF
Article Synopsis
  • Various genetic techniques help trace cell lineage during tissue development, with some focusing on spatial/temporal aspects and others linking gene expression to lineage.
  • The G-TRACE system allows for quick visualization of GAL4 expression patterns, enabling genome-wide expression-based lineage studies conducted by UCLA students and high school scholars.
  • Findings revealed new expression-based lineage patterns and were compiled into the G-TRACE Expression Database (GED), contributing to better student learning outcomes and retention in STEM fields.
View Article and Find Full Text PDF

Reconstructing the lineage relationships and dynamic event histories of individual cells within their native spatial context is a long-standing challenge in biology. Many biological processes of interest occur in optically opaque or physically inaccessible contexts, necessitating approaches other than direct imaging. Here we describe a synthetic system that enables cells to record lineage information and event histories in the genome in a format that can be subsequently read out of single cells in situ.

View Article and Find Full Text PDF

Maternal immune activation (MIA) model is increasingly well appreciated as a rodent model for the environmental risk factor of various psychiatric disorders. Numerous studies have demonstrated that MIA model is able to show face, construct, and predictive validity that are relevant to autism and schizophrenia. To model MIA, investigators often use viral mimic polyinosinic:polycytidylic acid (poly(I:C)) to activate the immune system in pregnant rodents.

View Article and Find Full Text PDF