Publications by authors named "Ke-Fu Yao"

Glass-to-glass transitions are useful for us to understand the glass nature, but it remains difficult to tune the metallic glass into significantly different glass states. Here, we have demonstrated that the high-entropy can enhance the degree of disorder in an equiatomic high-entropy metallic glass NbNiZrTiCo and elevate it to a high-energy glass state. An unusual glass-to-glass phase transition is discovered during heating with an enormous heat release even larger than that of the following crystallization at higher temperatures.

View Article and Find Full Text PDF

Metallic glasses (MGs) are promising candidates for catalysts with high efficiency for dyeing wastewater remediation, due to their metastable nature, disordered structure, and large residual stresses. However, dyeing wastewater usually contains a high concentration of inorganic ions which may have adverse effects on the degradation process, while the impacts of these ions on MGs' degradation capability have often been overlooked and still remain unknown. Thus, the roles of inorganic ions (Cl, NO, SO, and HPO) on the degradation of azo dye by Fe-based MG with nominal composition of FeSiBCu were systematically investigated.

View Article and Find Full Text PDF

Metallic core-shell nanostructures have inspired prominent research interests due to their better performances in catalytic, optical, electric, and magnetic applications as well as the less cost of noble metal than monometallic nanostructures, but limited by the complicated and expensive synthesis approaches. Development of one-pot and inexpensive method for metallic core-shell nanostructures' synthesis is therefore of great significance. A novel Cu network supported nanoporous Ag-Cu alloy with an Ag shell and an Ag-Cu core was successfully synthesized by one-pot chemical dealloying of Zr-Cu-Ag-Al-O amorphous/crystalline composite, which provides a new way to prepare metallic core-shell nanostructures by a simple method.

View Article and Find Full Text PDF

Synthesized from ultrafine particles with a bottom-up approach, nanoglasses are of particular importance in pursuing unique properties. Here, we design a metallic nanoglass alloy from two components of ∼Cu64Sc36 and ∼Fe90Sc10 nanoglasses. With nanoalloying mutually immiscible Fe and Cu, the properties of the nanoglass alloys can be tuned by varying the proportions of the ∼Fe90Sc10 component.

View Article and Find Full Text PDF

A common understanding of plastic deformation of metallic glasses (MGs) at room temperature is that such deformation occurs via the formation of runaway shear bands that usually lead to catastrophic failure of MGs. Here we demonstrate that inhomogeneous plastic flow at nanoscale can evolve in a well-controlled manner without further developing of shear bands. It is suggested that the sample undergoes an elasto-plastic transition in terms of quasi steady-state localized shearing.

View Article and Find Full Text PDF

Preparation of surface enhanced Raman scattering (SERS) nanostructures with both high sensitivity as well as high reproducibility has always been difficult and costly for routine SERS detection. Here we demonstrate air-stable metallic glassy nanowire arrays (MGNWAs), which were prepared by a cheap and rapid die nanoimprinting technique, could exhibit high SERS enhancement factor (EF) as well as excellent reproducibility. It shows that Pd(40.

View Article and Find Full Text PDF