Publications by authors named "Ke-Dong Xu"

Cobalt-catalyzed enantioconvergent cross-coupling of C(sp)-H bonds with -generated sulfenate anions is achieved to access chiral sulfoxides, which are found in the structures of many biologically active agents. The more challenging aliphatic C-H bonds as well as sterically hindered substrates containing tertiary C-H bonds could also be tolerated well. Mechanistic studies indicate that the transformation could undergo a CoS(O)R-mediated single-electron transfer with -fluorocarboxamides, followed by a 1,5-hydrogen atom transfer and then a pivotal organocobalt(IV)-controlled enantioselective cross-coupling process.

View Article and Find Full Text PDF

Objective: Hyperlactatemia is likely to occur among patients with acute pancreatitis (AP). Sodium bicarbonate (SB) therapy could be applied to correct potential detrimental acidic disturbances, but the exact impact of SB treatment is unknown. This study aims to investigate the impact of SB on AP patients complicated with hyperlactatemia.

View Article and Find Full Text PDF

We herein report a copper-catalyzed formal [5 + 2] aza-annulation of -fluorosulfonamides and 1,3-dienes/1,3-enynes for synthesis of structurally diverse alkene/alkyne-containing azepanes. The reaction features selective functionalization of distal unactivated C(sp)-H bonds and a broad substrate scope, thus allowing the late-stage modification of pharmaceuticals and natural products. A radical mechanism involving 1,5-hydrogen atom transfer of N-radicals, facile coupling of alkyl radicals with 1,3-dienes/1,3-enynes, and the construction of azepane motifs via C-N bond formation is proposed.

View Article and Find Full Text PDF

Overexpression or activation of Yes-associated protein (YAP) is common in cancer cells. Thus, targeting YAP may be a strategy for cancer therapy. Licochalcone A (LicA) is a primary active compound of licorice root and is known to have medicinal effects, such as antioxidant, antibacterial, antiviral, and anticancer effects.

View Article and Find Full Text PDF

The novel methods for efficient plant regeneration via direct somatic embryogenesis (SE) and SE-mediated transformation system under high concentration of NAA in Ranunculus sceleratus were established. On MS media containing a high concentration of NAA (10.0 mg/L) in the dark, all inoculated explants (root, stem and leaf) formed somatic embryos at high frequencies, respectively, 66.

View Article and Find Full Text PDF

A new approach was established for the regeneration of Trichosanthes kirilowii from root, stem, and leaf explants by somatic embryogenesis (SE), involving a previously unreported SE structure, rhizoid tubers (RTBs). During SE, special rhizoids were first induced from root, stem, and leaf explants with average rhizoid numbers of 62.33, 40.

View Article and Find Full Text PDF

Previous studies have shown that the SUP genes play important roles in flower development and plant growth and morphogenesis. In this study, we isolated and characterized a SUPERMAN-like gene DgSZFP from chrysanthemum. DgSZFP contains one conserved Cys2/His2-type zinc finger motifs in the N-terminal region and an EAR-box in C-terminus.

View Article and Find Full Text PDF

Plant vacuolar Na(+)/H(+) antiporter genes play significant roles in salt tolerance. However, the roles of the chrysanthemum vacuolar Na(+)/H(+) antiporter genes in salt stress response remain obscure. In this study, we isolated and characterized a novel vacuolar Na(+)/H(+) antiporter gene DgNHX1 from chrysanthemum.

View Article and Find Full Text PDF

A drought stress-responsive Cys2/His2-type zinc finger protein gene DgZFP3 was previously isolated (Liu et al., Afr J Biotechnol 11:7781-7788, 2012b) from chrysanthemum. To assess roles of DgZFP3 in plant drought stress responses, we performed gain-of-function experiment.

View Article and Find Full Text PDF

The plant-specific NAC (for NAM, ATAF1, 2 and CUC2) transcription factors (TFs) have been implicated in different cellular processes involved in stress responses such as cold, high salinity or drought as well as abscisic acid (ABA) signalling. However, the roles of the chrysanthemum NAC TF genes in plant stress responses are still unclear. A full-length cDNA designated DgNAC1, containing a highly conserved N-terminal DNA-binding NAC domain, has been isolated from chrysanthemum by RACE (rapid amplification of cDNA ends).

View Article and Find Full Text PDF

A Cys2/His2-type zinc finger protein gene, DgZFP, was isolated from chrysanthemum by rapid amplification of cDNA ends (RACE) approach. The DgZFP encodes a protein of 211 amino acids residues with a calculated molecular mass of 22.9 kDa and theoretical isoelectric point is 8.

View Article and Find Full Text PDF