Proteostasis is fundamental for maintaining organismal health. However, the mechanisms underlying its dynamic regulation and how its disruptions lead to diseases are largely unclear. Here, we conduct in-depth propionylomic profiling in Drosophila, and develop a small-sample learning framework to prioritize the propionylation at lysine 17 of H2B (H2BK17pr) to be functionally important.
View Article and Find Full Text PDFMost organisms on the earth exhibit circadian rhythms in behavior and physiology, which are driven by endogenous clocks. Phosphorylation plays a central role in timing the clock, but how this contributes to overt rhythms is unclear. Here we conduct phosphoproteomics in conjunction with transcriptomic and proteomic profiling using fly heads.
View Article and Find Full Text PDFThe quality and efficiency of any PCR-based mutagenesis technique may not be optimal due to, among other things, amino acid bias, which means that the development of efficient PCR-free methods is desirable. Here, we present a highly efficient in vitro CRISPR/Cas9-mediated mutagenic (ICM) system that allows rapid construction of designed mutants in a PCR-free manner. First, it involves plasmid digestion by utilizing a complex of Cas9 with specific single guide RNA (sgRNA) followed by degradation with T5 exonuclease to generate a 15 nt homologous region.
View Article and Find Full Text PDFWe report a database of circadian genes in eukaryotes (CGDB, http://cgdb.biocuckoo.org), containing ∼73 000 circadian-related genes in 68 animals, 39 plants and 41 fungi.
View Article and Find Full Text PDF