Am J Physiol Lung Cell Mol Physiol
November 2024
Chronic obstructive pulmonary disease (COPD), comprised of chronic bronchitis and emphysema, is a leading cause of morbidity and mortality worldwide. Mitogen-activated protein 2 kinase (MAP2K) pathway activation is present in COPD lung tissue and a genetic polymorphism in associates with FEV1 decline in COPD, suggesting it may contribute to disease pathogenesis. To test the functional contribution of in cigarette smoke (CS)-induced lung inflammation, we used a short-term CS exposure model in mice deficient in myeloid () and wild-type mice ().
View Article and Find Full Text PDFAcute respiratory distress syndrome (ARDS) remains a significant problem in need of new pharmaceutical approaches to improve its resolution. Studies comparing gene expression signatures in rodents and humans with lung injury reveal conserved pathways, including MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-related protein kinase) activation. In preclinical acute lung injury (ALI) models, inhibition of MAP2K1 (MAPK kinase 1)/MAP2K2 (MAPK kinase 2) improves measures of ALI.
View Article and Find Full Text PDFThe MEK1/2-ERK1/2 pathway has been implicated in regulating the inflammatory response to lung injury and infection, and pharmacologic MEK1/2 inhibitor compounds are reported to reduce detrimental inflammation in multiple animal models of disease, in part through modulation of leukocyte responses. However, the specific contribution of myeloid MEK1 in regulating acute lung injury (ALI) and its resolution remain unknown. Here, the role of myeloid Mek1 was investigated in a murine model of LPS-induced ALI (LPS-ALI) by genetic deletion using the Cre-floxed system (LysMCre × Mekfl), and human alveolar macrophages from healthy volunteers and patients with acute respiratory distress syndrome (ARDS) were obtained to assess activation of the MEK1/2-ERK1/2 pathway.
View Article and Find Full Text PDFLysozyme is an important component of the innate immune system and has roles in peptidoglycan cleavage of gram-positive organisms. Myeloid cells highly express the isoform, lysozyme M, and its promoter has been used to direct Cre recombinase expression to target deletion of floxed genes in myeloid cells. However, generation of the LysMCre mouse effectively disrupts the LysM gene, and mice homozygous for the Cre allele lack the LysM gene product.
View Article and Find Full Text PDFMatrix metalloproteinases (MMPs) are transcriptionally regulated proteases that have multiple roles in modifying the extracellular matrix (ECM) and inflammatory response. Our previous work identified Mmp28 as a key regulator of inflammation and macrophage polarization during experimental models of pulmonary infection, fibrosis, and chronic smoke exposure. However, the signaling pathways responsible for regulation of macrophage Mmp28 expression remain undefined.
View Article and Find Full Text PDFThis study was designed to test the therapeutic potential of a MEK1/2 inhibitor (MEKi) in an experimental model of pneumonia. The study found that treatment with MEKi reduced alveolar neutrophilic inflammation and led to faster recovery of weight compared to carrier-treated mice, without impairing bacterial clearance. Alveolar macrophages isolated from MEKi-treated mice also had increased M2 gene and protein expression, supporting the concept that MEKi modulates in vivo macrophage inflammatory responses.
View Article and Find Full Text PDFWe tested the role of Stat5 in dendritic cell and alveolar macrophage (AM) homeostasis in the lung using CD11c-cre mediated deletion (Cre5). We show that Stat5 is required for CD103 dendritic cell and AM development. We found that fetal monocyte maturation into AMs was impaired in Cre5 mice, and we also confirmed impaired AM development of progenitor cells using mixed chimera experiments.
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) comprises chronic bronchitis and emphysema, and is a leading cause of morbidity and mortality. Because tissue destruction is the prominent characteristic of emphysema, extracellular proteinases, particularly those with elastolytic ability, are often considered to be key drivers in this disease. Several human and mouse studies have implicated roles for matrix metalloproteinases (MMPs), particularly macrophage-derived proteinases, in COPD pathogenesis.
View Article and Find Full Text PDFMacrophages have important functional roles in regulating the timely promotion and resolution of inflammation. Although many of the intracellular signaling pathways involved in the proinflammatory responses of macrophages are well characterized, the components that regulate macrophage reparative properties are less well understood. We identified the MEK1/2 pathway as a key regulator of macrophage reparative properties.
View Article and Find Full Text PDFHox genes control many developmental events along the AP axis, but few target genes have been identified. Whether target genes are activated or repressed, what enhancer elements are required for regulation, and how different domains of the Hox proteins contribute to regulatory specificity are poorly understood. Six2 is genetically downstream of both the Hox11 paralogous genes in the developing mammalian kidney and Hoxa2 in branchial arch and facial mesenchyme.
View Article and Find Full Text PDFDuring embryonic development, the anterior-posterior body axis is specified in part by the combinatorial activities of Hox genes. Given the poor DNA binding specificity of Hox proteins, their interaction with cofactors to regulate target genes is critical. However, few regulatory partners or downstream target genes have been identified.
View Article and Find Full Text PDFAcetaminophen toxicity is the most common cause of acute liver failure in the United States and Europe. Although much is known about the metabolism of acetaminophen, many questions remain regarding the pathogenesis of liver injury. In this study, we examined the role of lipopolysaccharide-binding protein (LBP), a protein important in mediating cellular response to lipopolysaccharides, by using LBP wild-type and knockout (KO) mice.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
September 2002
Upregulation of CD14 in Kupffer cells has been implicated in the pathogenesis of several forms of liver injury, including alcoholic liver disease. However, it remains unclear whether CD14 mediates lipopolysaccharide (LPS) signaling in this specialized liver macrophage population. In this series of experiments, we determined the role of CD14 in LPS activation of Kupffer cells by using several complementary approaches.
View Article and Find Full Text PDF