In the present study, we developed a protein identification method using low-cost and easy-to-operate amino acid composition analysis. The identification program automatically compares the quantitative result for each amino acid concentration obtained from the amino acid analysis to the amino acid composition data retrieved from the UniProt protein database. We found that the accuracy of protein identification using amino acid composition analysis was comparable to that of mass spectrometry analysis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2015
Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals.
View Article and Find Full Text PDFPurpose: This study was performed to introduce and evaluate the potential of kinematic magnetic resonance imaging (KMRI) using a high-field open-magnet magnetic resonance (MR) system.
Methods: We attempted to perform KMRI of healthy volunteers' lumbar spine and knee in the lateral position and ankle in the supine position utilizing the superconducting, horizontally opened, 1.2 T MR system (OASIS, HITACHI, Tokyo, Japan).