A number of RORγ inhibitors have been reported over the past decade. There were also several examples advancing to human clinical trials, however, none of them has reached the market yet, suggesting that there could be common obstacles for their future development. As was expected from the general homology of nuclear receptor ligands, insufficient selectivity as well as poor physicochemical properties were identified as potential risks for a RORγ program.
View Article and Find Full Text PDFStarting from a previously reported RORγ inhibitor (1), successive efforts to improve in vivo potency were continued. Introduction of metabolically beneficial motifs in conjunction with scaffold hopping was examined, resulting in discovery of the second generation RORγ inhibitor composed of a 4-(isoxazol-3-yl)butanoic acid scaffold (24). Compound 24 achieved a 10-fold improvement in in vivo potency in a mouse CD3 challenge model along with significant anti-inflammatory effects in a mouse dermatitis model.
View Article and Find Full Text PDFRetinoic acid-related orphan receptor gamma (RORγ) plays pivotal roles in autoimmune diseases by controlling the lineage of interleukin 17 (IL-17)-producing CD4 T cells (Th17 cells). Structure-based drug design has proven fruitful in the development of inhibitors targeting the ligand binding domain (LBD) of RORγ. Here, we present the crystal structure of a novel RORγ inhibitor co-complex, in the presence of a corepressor (CoR) peptide.
View Article and Find Full Text PDFRetinoid-related orphan receptor gamma (RORγ) directly controls the differentiation of Th17 cell and the production of interleukin-17, which plays an integral role in autoimmune diseases. To obtain insight into RORγ, we have determined the first crystal structure of a ternary complex containing RORγ ligand-binding domain (LBD) bound with a novel synthetic inhibitor and a repressor peptide, 22-mer peptide from silencing mediator of retinoic acid and thyroid hormone receptor (SMRT). Comparison of a binary complex of nonliganded (apo) RORγ-LBD with a nuclear receptor co-activator (NCoA-1) peptide has shown that our inhibitor displays a unique mechanism different from those caused by natural inhibitor, ursolic acid (UA).
View Article and Find Full Text PDFA novel series of RORγ inhibitors was identified starting with the HTS hit 1. After SAR investigation based on a prospective consideration of two drug-likeness metrics, ligand efficiency (LE) and fraction of sp(3) carbon atoms (Fsp(3)), significant improvement of metabolic stability as well as reduction of CYP inhibition was observed, which finally led to discovery of a selective and orally efficacious RORγ inhibitor 3z.
View Article and Find Full Text PDFShort-acting oral calcilytics, calcium-sensing receptor (CaSR) antagonists, have been considered as alternatives for parathyroid hormone (PTH), an injectable bone anabolic drug used in the treatment of osteoporosis. Previously, we identified aminopropandiol 1, which transiently stimulated endogenous PTH secretion in rats. However, the inhibition of cytochrome P450 (CYP) 2D6 and the low bioavailability of 1 remain to be solved.
View Article and Find Full Text PDFSynthesis and structure-activity relationship studies on a new aminopropandiol class of derivatives as calcium-sensing receptor antagonists are described. Modification of the phenolic moiety of a calcilytic compound NPS 2143 led to the identification of an orally available compound (R,R)-31 which demonstrated a rapid and transient stimulation of PTH release in rats.
View Article and Find Full Text PDF