Ketoprofen (KP) is one of the most popular nonsteroidal anti-inflammatory drugs; however, drug-induced photosensitivity of KP has been reported as a serious adverse effect. KP incorporated into a protein can produce an allergen under UV irradiation, which causes drug-induced photosensitivity. The photochemistry of KP with 20 kinds of proteinogenic amino acids in phosphate buffer solutions at pH 7.
View Article and Find Full Text PDFMicrowave heating is widely used to accelerate the organic synthesis reaction. However, the role of the nonthermal microwave effect in the chemical reaction has not yet been well characterized. The microwave heating processes of an ethanol-hexane mixed solution were investigated using in situ microwave irradiation nuclear magnetic resonance spectroscopy and molecular dynamics (MD) simulation.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
October 2020
β-1,4-glucosaminoglucan (GG) was prepared from the sheath of a sulfur-oxidizing bacterium . Recently, GG was found to be adsorbed by cellulose (paper) and is therefore potentially applicable as an aminating agent for cellulose. We attempted to increase the yield of GG using a fed-batch cultivation method.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
August 2020
Several D-amino acid-containing peptides (DAACPs) with antimicrobial, cardio-excitatory, or neuronal activities have been found in several species. Here, we demonstrated the chiral separation of the antimicrobial peptide diastereomers, D-phenylseptin and L-phenylseptin using (S) and (R) 3,3'-phenyl-1,1'-binaphthyl-18-crown-6-ether columns (CR-I (+) and CR-I (-), respectively) and also investigated the underlying mechanism. First, using D-amino acid-containing tripeptide Phe-Phe-Phe-OH, we found that CR-I (+) could be used to recognize diastereomeric tripeptides containing an L-amino acid as the first residue.
View Article and Find Full Text PDFThe effect of the acetyl groups of cellulose acetate (CA) on its intrinsic birefringence and its wavelength dependence was investigated using density functional theory (DFT). Seven types of CA repeating-unit models that differ in their degree of substitution (DS) and substitution sites were used in the calculations. The results suggested that the intrinsic birefringence (Δn°) and its wavelength dependence significantly depended on the conformations of the acetyl group at C6.
View Article and Find Full Text PDFPharanois phoborhodopsin (ppR) from Natronomonas pharaonis is a transmembrane photoreceptor protein involved in negative phototaxis. Structural changes in ppR triggered by photoisomerization of the retinal chromophore are transmitted to its cognate transducer protein (pHtrII) through a cyclic photoreaction pathway involving several photointermediates. This pathway is called the photocycle.
View Article and Find Full Text PDFIn this work, three different types of acetylacetonato-based pincer-type nickel(ii) complexes (2) were prepared. Complex 2a possessed the tridentate ONN ligand, which was constructed by the condensation reaction of acetylacetone with N,N-diethylethylenediamine. Complex 2b contained the PPh2 donor group in contrast to the NEt2 group in 2a, i.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
July 2018
Bombinin H4 is an antimicrobial peptide that was isolated from the toad Bombina variegata. Bombinin H family peptides are active against gram-positive, gram-negative bacteria, and fungi as well as the parasite Leishmania. Among them, bombinin H4 (H4), which contains d-allo-isoleucine (d-allo-Ile) as the second residue in its sequence, is the most active, and its l-isomer is bombinin H2 (H2).
View Article and Find Full Text PDFCrystal models of cellulose Iβ and II, which contain various hydrogen bonding (HB) networks, were analyzed using density functional theory and Car-Parrinello molecular dynamics (CPMD) simulations. From the CPMD trajectories, the power spectra of the velocity correlation functions of hydroxyl groups involved in hydrogen bonds were calculated. For the Iβ allomorph, HB network A, which is dominant according to the neutron diffraction data, was stable, and the power spectrum represented the essential features of the experimental IR spectra.
View Article and Find Full Text PDFThe streptavidin-biotin complex has an extraordinarily high affinity (Ka: 10mol) and contains one of the strongest non-covalent interactions known. This strong interaction is widely used in biological tools, including for affinity tags, detection, and immobilization of proteins. Although hydrogen bond networks and hydrophobic interactions have been proposed to explain this high affinity, the reasons for it remain poorly understood.
View Article and Find Full Text PDFThe molecular interactions of inhibitors of bromodomains (BRDs) were investigated. BRDs are protein interaction modules that recognizing ε-N-acetyl-lysine (εAc-Lys) motifs found in histone tails and are promising protein-protein interaction (PPI) targets. First, we analyzed a peptide ligand containing εAc-Lys to evaluate native PPIs.
View Article and Find Full Text PDFMelittin is a venom peptide that disrupts lipid bilayers at temperatures below the liquid-crystalline to gel phase transition temperature (T). Notably, the ability of melittin to disrupt acidic dimyristoylphosphatidylglycerol (DMPG) bilayers was weaker than its ability to disrupt neutral dimyristoylphosphatidylcholine bilayers. The structure and orientation of melittin bound to DMPG bilayers were revealed by analyzing the C chemical shift anisotropy of [1-C]-labeled melittin obtained from solid-state C NMR spectra.
View Article and Find Full Text PDFThe mechanisms of naphthacene and triphenylene discrimination using commercially available cellulose tris(4-methylbenzoate) (CMB) and cellulose tribenzoate (CB) chiral stationary phases were investigated using molecular mechanics calculations. Naphthacene and triphenylene could be separated by liquid chromatography on CMB and CB, with triphenylene being eluted earlier than naphthacene on both phases. However, the corresponding separation factor is much larger for CMB than for CB.
View Article and Find Full Text PDFChromatographic separation of several sets of aromatic position isomers on three cellulose- and one amylose-based chiral stationary phases was performed to evaluate the potential of a polysaccharide-based chiral stationary phase (CSP) in the separation of isomeric or closely similar molecules, and to understand the interaction mechanism of this type of CSP with analytes. Their ability of molecular recognition was quite outstanding, but the selection rule was particular to each polysaccharide derivative. In the series of analytes, cellulose tris(4-methylbenzoate) and tris(3,5-dimethylphenylcarbamate) exhibited a contrasting selection rule, and the recognition mechanism was considered based on the computer-simulation of the former polymer.
View Article and Find Full Text PDFThe crystal structure of cellulose III(I)was analyzed using first-principles density functional theory (DFT). The geometry was optimized using variable-cell relaxation, as implemented in Quantum ESPRESSO. The Perdew-Burke-Ernzerhof (PBE) functional with a correction term for long-range van der Waals interactions (PBE-D) reproduced the experimental structure well.
View Article and Find Full Text PDFThe structure, topology and orientation of membrane-bound antibiotic alamethicin were studied using solid state nuclear magnetic resonance (NMR) spectroscopy. (13)C chemical shift interaction was observed in [1-(13)C]-labeled alamethicin. The isotropic chemical shift values indicated that alamethicin forms a helical structure in the entire region.
View Article and Find Full Text PDFThe intrinsic birefringence of a cellulose triacetate (CTA) film is evaluated using the polarizability of the monomer model of the CTA repeating unit, which is calculated using the density functional theory (DFT). Since the CTA monomer is known to have three rotational isomers, referred to as gg, gt, and tg, the intrinsic birefringence of these isomers is evaluated separately. The calculation indicates that the monomer CTA with gg and gt structures shows a negative intrinsic birefringence, whereas the monomer unit with a tg structure shows a positive intrinsic birefringence.
View Article and Find Full Text PDFκ-Opioid receptor is a member of the opioid receptor family and selectively interacts with the opioid peptide dynorphin. Extracellular loop II (ECL-II) of the κ-opioid receptor displays an amphiphilic helix in membrane environments and the N-terminal α-helix of dynorphin A(1-17) (hereafter DynA17) is inserted into the membrane with the tilt angle of 21° to the bilayer normal. ECL-II peptides (1-33), corresponding to 196-228 of κ-opioid receptor with [1-(13)C]- or [3-(13)C]-labeled amino acids were incorporated into large [dimyristoylphosphatidyl choline (DMPC)/ dihexanoylphosphatidyl choline (DHPC) = 3, q = 3] and small bicelle (q = 1) systems.
View Article and Find Full Text PDFThe crystal structure of cellulose triacetate I (CTA I) was investigated using first-principles density functional theory (DFT) calculations. The results are in good agreement with the experimental structure obtained by Sikorski et al. when performing the calculation with inclusion of the dispersion correction.
View Article and Find Full Text PDFHaving a theoretical understanding of the orientation of immunoglobulin on an immobilized solid surface is important in biomedical pathogen-detecting systems and cellular analysis. Despite the stable adsorption of immunoglobulin on a polystyrene (PS) surface that has been applied in many kinds of immunoassays, there are many uncertainties in antibody-based clinical and biological experimental methods. To understand the binding mechanism and physicochemical interactions between immunoglobulin and the PS surface at the atomic level, we investigated the binding behavior and interactions of the monoclonal immunoglobulin G (IgG) on the PS surface using the computational method.
View Article and Find Full Text PDFWe investigated the possibility of a folded-chain crystal of the cellulose II polymorph by molecular dynamics (MD) simulation. The molecular direction of cellulose chains in cellulose II is anti-parallel, which allows the crystal to have folded-chain packing. It is impossible for cellulose I to form such a structure due to its parallel up assembly.
View Article and Find Full Text PDFCalcitonin (CT) is an amyloid fibril forming peptide. Since salmon calcitonin (sCT), having Leu residues (Leu12, Leu16 or Leu19) instead of Tyr12, Phe16 or Phe19 for human calcitonin (hCT), is known to form the fibrils much slower than hCT, hCTs mutated to Leu residues at the position of 16 (F16L-hCT), 19 (F19L-hCT), and 12, 16 and 19 (TL-hCT) were examined to reveal the role of aromatic side-chains on amyloid fibrillation using solid-state (13)C NMR. The detailed kinetics were analyzed using a two-step reaction mechanism such as nucleation and fibril elongation with the rate constants of k1 and k2, respectively.
View Article and Find Full Text PDFBovine lactoferrampin (LFampinB) is a newly discovered antimicrobial peptide found in the N1-domain of bovine lactoferrin (268-284), and consists of 17 amino-acid residues. It is important to determine the orientation and structure of LFampinB in bacterial membranes to reveal the antimicrobial mechanism. We therefore performed (13)C and (31)P NMR, (13)C-(31)P rotational echo double resonance (REDOR), potassium ion-selective electrode, and quartz-crystal microbalance measurements for LFampinB with mimetic bacterial membrane and molecular-dynamics simulation in acidic membrane.
View Article and Find Full Text PDFSphaerotilus natans is a filamentous sheath-forming bacterium, commonly found in bulking activated sludge. The bulky nature of this bacterium is caused by an extracellular polysaccharide (EPS). EPS is a linear acidic polysaccharide with the following chemical structure: [ → 4)-α-D-Glcp-(1 → 2)-β-D-GlcpA-(1 → 2)-α-L-Rhap-(1 → 3)-β-L-Rhap-(1 → ](n).
View Article and Find Full Text PDFAn understanding of the dissolution process of cellulose derivatives is important not only for basic research but also for industrial purposes. We investigated the dissolution process of cellulose triacetate II (CTA II) nano-sized crystal in DMSO solvent using molecular dynamics simulations. The nano-sized crystal consists of 18 CTA chains.
View Article and Find Full Text PDF