Here, we systematically investigated the growth conditions of an n-GaN cap layer for nanowire-based light emitters with a tunnel junction. Selective-area growth of multiple quantum shell (MQS)/nanowire core-shell structures on a patterned n-GaN/sapphire substrate was performed by metal-organic vapor phase epitaxy, followed by the growth of a p-GaN, an n/ p-GaN tunnel junction, and an n-GaN cap layer. Specifically, two-step growth of the n-GaN cap layer was carried out under various growth conditions to determine the optimal conditions for a flat n-GaN cap layer.
View Article and Find Full Text PDFCoaxial GaInN/GaN multiple-quantum-shells (MQSs) nanowires (NWs) were grown on an n-type GaN/sapphire template employing selective growth by metal-organic chemical vapour deposition (MOCVD). To improve the cathodoluminescence (CL) emission intensity, an AlGaN shell was grown underneath the MQS active structures. By controlling the growth temperature and duration, an impressive and up to 11-fold enhancement of CL intensity is achieved at the top area of the GaInN/GaN MQS NWs.
View Article and Find Full Text PDF