Publications by authors named "Kazuyo Uchida"

Hydronephrosis, the dilation of kidneys due to abnormal urine retention, occurs spontaneously in certain inbred mouse strains. In humans, its occurrence is often attributed to acquired urinary tract obstructions in adults, whereas in children, it can be congenital. However, the genetic factors underlying hydronephrosis pathogenesis remain unclear.

View Article and Find Full Text PDF

Being overweight exacerbates various metabolic diseases, necessitating the identification of target molecules for obesity control. In the current study, we investigated common physiological features related to metabolism in mice with low weight gain: (1) G protein-coupled receptor, family C, group 5, member B-knockout; (2) gastric inhibitory polypeptide receptor-knockout; and (3) Iroquois-related homeobox 3-knockout. Moreover, we explored genes involved in metabolism by analyzing differentially expressed genes (DEGs) between low-weight gain mice and the respective wild-type control mice.

View Article and Find Full Text PDF

We previously identified the tumor suppressor INT6/eIF3e as a novel down regulator of HIF2α. Small interfering RNA targeting Int6 (siRNA-Int6) in HeLa cells led to normoxic stabilization of HIF2α, with concomitant transcription of angiogenic factors, including angiopoietin, basic fibroblast growth factor, and vascular endothelial growth factor. Here we used HIF2α normoxic up-regulation via Int6 silencing to investigate the role of HIF2α in endothelial cells.

View Article and Find Full Text PDF

Spliceostatin A (SSA) is a methylated derivative of an antitumor natural product FR901464, which specifically binds and inhibits the SF3b spliceosome sub-complex. To investigate the selective antitumor activity of SSA, we focused on the regulation of vascular endothelial growth factor (VEGF) mRNA, since VEGF is a key regulatory component in tumor angiogenesis and known for the intricate regulation of mRNA processing, such as alternative splicing. We found that in HeLa cells SSA reduced the amount of both mRNA and protein of VEGF.

View Article and Find Full Text PDF

Background: We previously identified INT6/eIF3e as a novel regulator of hypoxia-inducible factor 2alpha (HIF2alpha) activity. Small interfering RNA (siRNA)-Int6 adequately stabilized HIF2alpha, even under normoxic conditions, and thereby enhanced the expression of several angiogenic factors in vitro, suggesting that siRNA-Int6 may induce angiogenesis in vivo.

Methods And Results: We demonstrated a 6- to 8-fold enhanced formation of normal arteries and veins in the subcutaneous regions of adult mice 5 days after a single siRNA-Int6 application.

View Article and Find Full Text PDF

Recently, various sets of protein biomarkers have been discovered in important diseases such as cancers, brain stroke, heart attack, diabetes, and so on. Many of these biomarkers are expected to be extremely valuable as targets for clinical diagnosis and drug development; however, the clinical validation is difficult and time-consuming by individual assays or due to very low concentration in an early stage of disease. For the super-sensitive and multiplex detection of target biomarkers, we have developed MUSTag (Multiple Simultaneous Tag) assay technology with innovative modification of the immuno-PCR method.

View Article and Find Full Text PDF

The hypoxia-inducible factors HIF-1 alpha and HIF-2 alpha are structurally similar as regards their DNA-binding and dimerization domains, but differ in their transactivation domains and, as is shown by experiments using hif-1 alpha(-/-) and hif-2 alpha(-/-) mice, in their functions. This implies that HIF-1 alpha and HIF-2 alpha may have unique target genes. To address this discrepancy and identify HIF-2 alpha-specific target genes, we performed yeast two-hybrid analysis and identified the tumor suppressor Int6/eIF3e/p48 as a novel target gene product involved in HIF-2 alpha regulation.

View Article and Find Full Text PDF

Huntington disease is caused by polyglutamine (polyQ) expansion in huntingtin. Selective and progressive neuronal loss is observed in the striatum and cerebral cortex in Huntington disease. We have addressed whether expanded polyQ aggregates appear in regions of the brain apart from the striatum and cortex and whether there is a correlation between expanded polyQ aggregate formation and dysregulated transcription.

View Article and Find Full Text PDF