Publications by authors named "Kazuya Nozawa"

Kainate (KA)-type glutamate receptors (KARs) are implicated in various neuropsychiatric and neurological disorders through their ionotropic and metabotropic actions. However, compared to AMPA- and NMDA-type receptor functions, many aspects of KAR biology remain incompletely understood. Our study demonstrates an important role of KARs in organizing climbing fiber (CF)-Purkinje cell (PC) synapses and synaptic plasticity in the cerebellum, independently of their ion channel or metabotropic functions.

View Article and Find Full Text PDF

Excitatory synapses are formed and matured by the cooperative actions of synaptic organizers, such as neurexins (Nrxns), neuroligins (Nlgns), LRRTMs, and Cbln1. Recent super-resolution nanoscopy developments have revealed that many synaptic organizers, as well as glutamate receptors and glutamate release machinery, exist as nanoclusters within synapses. However, it is unclear how such nanodomains interact with each other to organize excitatory synapses in vivo.

View Article and Find Full Text PDF

Synapses are precisely established, maintained, and modified throughout life by molecules called synaptic organizers, which include neurexins and neuroligins (Nlgn). Despite the importance of synaptic organizers in defining functions of neuronal circuits, the cellular and subcellular localization of many synaptic organizers has remained largely elusive because of the paucity of specific antibodies for immunohistochemical studies. In the present study, rather than raising specific antibodies, we generated knock-in mice in which a hemagglutinin (HA) epitope was inserted in the Nlgn1 gene.

View Article and Find Full Text PDF

Organic material characteristics of volume change and stress generation have attracted the attention of many researchers aiming to develop chemomechanical systems such as artificial muscles and polymer engines having the advantages of high energy density and silent operation. Although polymer gels offer a relatively large actuator stroke, their mechanical properties are relatively poor and the working temperature is relatively low, often limited by the evaporation of liquid if contained. We have developed an iodine-treated poly(vinyl alcohol) having extraordinarily large vapor-induced deswelling stress reaching 59 MPa, which is one to two orders of magnitude greater than those of ordinary polymer gels.

View Article and Find Full Text PDF