We describe a next-generation Drosophila protein interaction map-"DPIM2"-established from affinity purification-mass spectrometry of 5,805 baits, covering the largest fraction of the Drosophila proteome. The network contains 32,668 interactions among 3,644 proteins, organized into 632 clusters representing putative functional modules. Our analysis expands the pool of known protein interactions in Drosophila, provides annotation for poorly studied genes, and postulates previously undescribed protein interaction relationships.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2019
Autophagy, a system for the bulk degradation of intracellular components, is essential for homeostasis and the healthy physiology and development of cells and tissues. Its deregulation is associated with human disease. Thus, methods to modulate autophagic activity are critical for analysis of its role in mammalian cells and tissues.
View Article and Find Full Text PDFNotch signaling is an evolutionarily conserved signal transduction pathway that is essential for metazoan development. Upon ligand binding, the Notch intracellular domain (NOTCH ICD) translocates into the nucleus and forms a complex with the transcription factor RBPJ (also known as CBF1 or CSL) to activate expression of Notch target genes. In the absence of a Notch signal, RBPJ acts as a transcriptional repressor.
View Article and Find Full Text PDFRecent large-scale studies have provided a global description of the interactome-the whole network of protein interactions in a cell or an organism-for several model organisms. Defining protein interactions on a proteome-wide scale has led to a better understanding of the cellular functions of many proteins, especially those that have not been studied by classical molecular genetic approaches. Here we describe the resources, methods, and techniques necessary for generation of such a proteome-scale interactome in a high throughput manner.
View Article and Find Full Text PDFGenetic modifier screens offer a powerful, indeed a uniquely powerful tool for the analysis and identification of elements capable of modulating specific cellular functions in development. Here, we describe the methodology that allowed us to explore the genetic circuitry that affects a Notch mutant phenotype caused by the abnormal endosomal trafficking of the Notch receptor. Endosomal trafficking events are increasingly appreciated to play a major role in controlling Notch signaling in development.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2013
The clinical severity of the neurodegenerative disorder spinal muscular atrophy (SMA) is dependent on the levels of functional Survival Motor Neuron (SMN) protein. Consequently, current strategies for developing treatments for SMA generally focus on augmenting SMN levels. To identify additional potential therapeutic avenues and achieve a greater understanding of SMN, we applied in vivo, in vitro, and in silico approaches to identify genetic and biochemical interactors of the Drosophila SMN homolog.
View Article and Find Full Text PDFCell-cell interactions define a quintessential aspect of multicellular development. Metazoan morphogenesis depends on a handful of fundamental, conserved cellular interaction mechanisms, one of which is defined by the Notch signaling pathway. Signals transmitted through the Notch surface receptor have a unique developmental role: Notch signaling links the fate of one cell with that of a cellular neighbor through physical interactions between the Notch receptor and the membrane-bound ligands that are expressed in an apposing cell.
View Article and Find Full Text PDFCell-to-cell communication via the Notch pathway is mediated between the membrane-bound Notch receptor and either of its canonical membrane-bound ligands Delta or Serrate. Notch ligands mediate receptor transactivation between cells and also mediate receptor cis-inhibition when Notch and ligand are co-expressed on the same cell. We demonstrate in Drosophila that removal of any of the EGF-like repeats (ELRs) 4, 5 or 6 results in a Serrate molecule capable of transactivating Notch but exhibiting little or no Notch cis-inhibition capacity.
View Article and Find Full Text PDFNotch signaling is an evolutionarily conserved mechanism that defines a key cell fate control mechanism in metazoans. Notch signaling relies on the surface interaction between the Notch receptor and membrane bound ligands in an apposing cell. In our recent study,(22) we uncover a non-canonical receptor activation path that relies on a ligand-independent, intracellular activation of the receptor as it travels through the endosomal compartments.
View Article and Find Full Text PDFThe Notch signaling pathway defines a conserved mechanism that regulates cell fate decisions in metazoans. Signaling is modulated by a broad and multifaceted genetic circuitry, including members of the endocytic machinery. Several individual steps in the endocytic pathway have been linked to the positive or negative regulation of the Notch receptor.
View Article and Find Full Text PDFDSL ligands promote proteolysis of the Notch receptor, to release active Notch intracellular domain (N(ICD)). Conversely, the E3 ubiquitin ligase Deltex can activate ligand-independent Notch proteolysis and signaling. Here we show that Deltex effects require endocytic trafficking by HOPS and AP-3 complexes.
View Article and Find Full Text PDFNotch (N) is a single-pass transmembrane receptor. The N signaling pathway is an evolutionarily conserved mechanism that controls various cell-specification processes. Drosophila Deltex (Dx), a RING-domain E3 ubiquitin ligase, binds to the N intracellular domain, promotes N's endocytic trafficking to late endosomes, and was proposed to activate Suppressor of Hairless [Su(H)]-independent N signaling.
View Article and Find Full Text PDFThe Notch signaling pathway is an evolutionarily conserved mechanism that regulates many cell fate decisions. The deltex (dx) gene encodes an E3-ubiquitin ligase that binds to the intracellular domain of the Notch protein and regulates Notch signaling in a positive manner. However, it is still not clear how Dx does this.
View Article and Find Full Text PDFNotch (N) signaling is an evolutionarily conserved mechanism that regulates many cell-fate decisions. deltex (dx) encodes an E3-ubiquitin ligase that binds to the intracellular domain of N and positively regulates N signaling. However, the precise mechanism of Dx action is unknown.
View Article and Find Full Text PDFThe X11-like (X11L) protein was originally isolated as a protein bound to the cytoplasmic domain of the beta-amyloid precursor protein (APP), which is associated with Alzheimer's disease. In mammals, X11L is believed to play an important role in the regulation of APP metabolism. Here we isolated and characterized the Drosophila X11L (dX11L) protein, also may be referred to this protein as Drosophila Mint (dMint), Lin 10 (dLin10) or X11 (dX11), is thought to be expressed in neuronal tissues from late embryonic through to the adult stages of the fly.
View Article and Find Full Text PDFThe Notch pathway is an evolutionarily conserved signaling mechanism that is essential for cell-cell interactions. The Drosophila deltex gene regulates Notch signaling in a positive manner, and its gene product physically interacts with the intracellular domain of Notch through its N-terminal domain. Deltex has two other domains that are presumably involved in protein-protein interactions: a proline-rich motif that binds to SH3-domains, and a RING-H2 finger motif.
View Article and Find Full Text PDF