Publications by authors named "Kazutsune Yamagata"

Article Synopsis
  • The chromatin-associated ATPases Tip48 and Tip49 are involved in important nuclear processes like DNA repair and gene regulation, often overexpressed in cancers, but their exact role is not well understood.
  • Research shows that depleting Tip49 leads to increased apoptosis in a p53-dependent manner and can inhibit the development of leukemia in mouse models.
  • A new compound, DS-4950, was created to inhibit the function of Tip48/49, proving to be safe in healthy mice while significantly reducing tumor size and improving survival rates, indicating that these ATPases could be crucial targets for cancer therapy.
View Article and Find Full Text PDF

Disease-risk stratification and development of intensified chemotherapy protocols have substantially improved the outcome of acute lymphoblastic leukemia (ALL). However, outcomes of relapsed or refractory cases remain poor. Previous studies have discussed the oncogenic role of enhancer of zeste homolog 1 and 2 (EZH1/2), and the efficacy of dual inhibition of EZH1/2 as a treatment for hematological malignancy.

View Article and Find Full Text PDF

Malignant rhabdoid tumors (MRTs) are rare and highly aggressive pediatric cancers with no standard of care. MRTs are characterized by loss of SMARCB1, which results in upregulated expression of enhancer of zeste homolog 2 (EZH2), which is responsible for the methylation of lysine 27 of histone H3 (H3K27me3), leading to the repression of gene expression. Although previous reports suggest EZH2 as an effective therapeutic target, the functions of EZH1, the other homolog of EZH, in MRT remain unknown.

View Article and Find Full Text PDF

Monocytic leukemia zinc finger protein (MOZ, MYST3, or KAT6A) is a MYST-type acetyltransferase involved in chromosomal translocation in acute myelogenous leukemia (AML) and myelodysplastic syndrome. MOZ is established as essential for hematopoiesis; however, the role of MOZ in AML has not been addressed. We propose that MOZ is critical for AML development induced by MLL-AF9, MLL-AF10, or MOZ-TIF2 fusions.

View Article and Find Full Text PDF

Chromosome translocations involving the MLL gene are common rearrangements in leukemia. Such translocations fuse the MLL 5'-region to partner genes in frame, producing MLL-fusions that cause MLL-related leukemia. MLL-fusions activate transcription of target genes such as HoxA cluster and Meis1, but the underlying mechanisms remain to be fully elucidated.

View Article and Find Full Text PDF
Article Synopsis
  • Mantle cell lymphoma (MCL) is a rare type of cancer that often becomes resistant to treatment, like the drug ibrutinib, so new treatment options are needed.
  • Researchers tested a new drug called OR-S1, which targets proteins called EZH1/2, and found that it worked better than ibrutinib in stopping tumor growth in mice with MCL.
  • The study showed that OR-S1 affects how MCL cells grow and change, and it works by targeting a protein called CDKN1C that helps control the cell cycle, making it a potential new treatment for tough-to-treat MCL.
View Article and Find Full Text PDF

Gliomas are the second most common primary brain tumors in adults. They are treated with combination therapies, including surgery, radiotherapy, and chemotherapy. There are currently limited treatment options for recurrent gliomas, and new targeted therapies need to be identified, especially in glioblastomas, which have poor prognosis.

View Article and Find Full Text PDF
Article Synopsis
  • Chondrosarcoma is a serious type of bone cancer that doesn't respond well to regular treatments like chemotherapy or radiation.
  • About half of the people with this cancer have a change in a gene called IDH, which makes the cancer worse by producing a harmful substance.
  • A new drug called DS-1001b shows promise by stopping the bad effects of the IDH change, helping to slow down cancer growth and possibly improve treatment options for patients.
View Article and Find Full Text PDF

Multiple myeloma (MM) is an incurable hematological malignancy caused by accumulation of abnormal clonal plasma cells. Despite the recent development of novel therapies, relapse of MM eventually occurs as a result of a remaining population of drug-resistant myeloma stem cells. Side population (SP) cells show cancer stem cell-like characteristics in MM; thus, targeting these cells is a promising strategy to completely cure this malignancy.

View Article and Find Full Text PDF

Eradication of chemotherapy-resistant leukemia stem cells is expected to improve treatment outcomes in patients with acute myelogenous leukemia (AML). In a mouse model of AML expressing the fusion, we found that Ring1A and Ring1B, components of Polycomb repressive complex 1, play crucial roles in maintaining AML stem cells. Deletion of and (/) from AML cells diminished self-renewal capacity and induced the expression of numerous genes, including Overexpression of caused AML cells to differentiate into mature cells, whereas knockdown in /-deficient cells inhibited differentiation.

View Article and Find Full Text PDF

Epigenetic regulation is required to ensure the precise spatial and temporal pattern of gene expression that is necessary for embryonic development. Although the roles of some epigenetic modifications in embryonic development have been investigated in depth, the role of methylation at lysine 79 (H3K79me) is poorly understood. Dot1L, a unique methyltransferase for H3K79, forms complexes with distinct sets of co-factors.

View Article and Find Full Text PDF

Global histone hyperacetylation is suggested to play a critical role for replacement of histones by transition proteins and protamines to compact the genome during spermiogenesis. However, the underlying mechanisms for hyperacetylation-mediated histone replacement remains poorly understood. Here, we report that EPC1 and TIP60, two critical components of the mammalian nucleosome acetyltransferase of H4 (NuA4) complexes, are coexpressed in male germ cells.

View Article and Find Full Text PDF

Acute myeloid leukemia is a clonal malignant disorder derived from a small number of leukemic stem cells (LSCs). Rearrangements of the mixed lineage leukemia (MLL) gene are found in acute myeloid leukemia associated with poor prognosis. The upregulation of Hox genes is critical for LSC induction and maintenance, but is unlikely to support malignancy and the high LSC frequency observed in MLL leukemias.

View Article and Find Full Text PDF

The CALM-AF10 fusion gene, which results from a t(10;11) translocation, is found in a variety of hematopoietic malignancies. Certain HOXA cluster genes and MEIS1 genes are upregulated in patients and mouse models that express CALM-AF10. Wild-type clathrin assembly lymphoid myeloid leukemia protein (CALM) primarily localizes in a diffuse pattern within the cytoplasm, whereas AF10 localizes in the nucleus; however, it is not clear where CALM-AF10 acts to induce leukemia.

View Article and Find Full Text PDF

Chromosomal translocations that involve the monocytic leukemia zinc finger (MOZ) gene are typically associated with human acute myeloid leukemia (AML) and often predict a poor prognosis. Overexpression of HOXA9, HOXA10, and MEIS1 was observed in AML patients with MOZ fusions. To assess the functional role of HOX upregulation in leukemogenesis by MOZ-TIF2, we focused on bromodomain-PHD finger protein 1 (BRPF1), a component of the MOZ complex that carries out histone acetylation for generating and maintaining proper epigenetic programs in hematopoietic cells.

View Article and Find Full Text PDF

AML1/RUNX1 is a frequent target of chromosome translocations and mutations in myeloid and B-cell leukemias, and upregulation of AML1 is also observed in some cases of T-cell leukemias and lymphomas. This study shows that the incidence of thymic lymphoma in p53-null mice is less frequent in the Aml1(+/-) than in the Aml1(+/+) background. AML1 is upregulated in p53-null mouse bone-marrow cells and embryonic fibroblasts.

View Article and Find Full Text PDF

Sirt1 appear to be NAD(+)-dependent deacetylase that deacetylates histones and several non-histone proteins. In this study, we identified Sirt1 as a physical interaction partner of Tip60, which is a mammalian MYST-type histone acetyl-transferase that specifically acetylates histones H2A and H4. Although Tip60 also acetylates DNA damage-specific histone H2A variant H2AX in response to DNA damage, which is a process required for appropriate DNA damage response, overexpression of Sirt1 represses Tip60-mediated acetylation of H2AX.

View Article and Find Full Text PDF

Etoposide and teniposide, derivatives of podophyllotoxin, are inhibitors of DNA topoisomerase II and are potent anticancer agents. An adverse effect linked to the use of these drugs is the development of acute myeloid leukemia, a disorder usually associated with chromosomal translocation. To examine podophyllotoxin-induced DNA rearrangement, we developed an assay system to measure illegitimate recombination in Saccharomyces cerevisiae chromosomes.

View Article and Find Full Text PDF