The Wnt/β-catenin signaling pathway plays crucial roles in embryonic development and the development of multiple types of cancer, and its aberrant activation provides cancer cells with escape mechanisms from immune checkpoint inhibitors. E7386, an orally active selective inhibitor of the interaction between β-catenin and CREB binding protein, which is part of the Wnt/β-catenin signaling pathway, disrupts the Wnt/β-catenin signaling pathway in HEK293 and adenomatous polyposis coli ()-mutated human gastric cancer ECC10 cells. It also inhibited tumor growth in an ECC10 xenograft model and suppressed polyp formation in the intestinal tract of mice, in which mutation of activates the Wnt/β-catenin signaling pathway.
View Article and Find Full Text PDFAntimicrob Agents Chemother
October 2011
E1210 is a new antifungal compound with a novel mechanism of action and broad spectrum of antifungal activity. We investigated the in vitro antifungal activities of E1210 compared to those of fluconazole, itraconazole, voriconazole, amphotericin B, and micafungin against clinical fungal isolates. E1210 showed potent activities against most Candida spp.
View Article and Find Full Text PDFE1210 is a first-in-class, broad-spectrum antifungal with a novel mechanism of action-inhibition of fungal glycosylphosphatidylinositol biosynthesis. In this study, the efficacies of E1210 and reference antifungals were evaluated in murine models of oropharyngeal and disseminated candidiasis, pulmonary aspergillosis, and disseminated fusariosis. Oral E1210 demonstrated dose-dependent efficacy in infections caused by Candida species, Aspergillus spp.
View Article and Find Full Text PDFQuinoline amide, azaindole amide and pyridine amides were synthesized and tested for in vitro antifungal activity against fungi. These synthesized amides have potent antifungal activity against Candida albicans and Aspergillus fumigatus. Our results suggest that hetero ring amides may be potent antifungal agents that operate by inhibiting the function of Gwt1 protein in the GPI biosynthetic pathway.
View Article and Find Full Text PDFBeta-catenin functions both as a regulator of cadherin-mediated cell-cell adhesion and a mediator of Wnt signaling. Recently, caspase-3-dependent cleavage of beta-catenin was demonstrated to occur during apoptosis. Here, we show that beta-catenin is proteolytically cleaved in G401 Wilms' tumor cells that were detached from the culture dish.
View Article and Find Full Text PDFGlycosylphosphatidylinositol (GPI)-anchored cell wall mannoproteins are required for the adhesion of pathogenic fungi, such as Candida albicans, to human epithelium. Small molecular inhibitors of the cell surface presentation of GPI-anchored mannoproteins would be promising candidate drugs to block the establishment of fungal infections. Here, we describe a medicinal genetics approach to identifying the gene encoding a novel target protein that is required for the localization of GPI-anchored cell wall mannoproteins.
View Article and Find Full Text PDF