Publications by authors named "Kazutaka Hirakawa"

The fluorescence quantum yield of berberine in aqueous solution is significantly smaller than those of organic solution. The time profile of fluorescence intensity of berberine was analyzed by a bi-exponential function, showing that two kinds of states of berberine exist in the solutions. The observed fluorescence lifetime of shorter lifetime species of berberine in water (0.

View Article and Find Full Text PDF

Under visible light irradiation, water-insoluble P(V)porphyrins oxidized 1-benzyl-1,4-dihydronicotinamide (BNADH), a model compound for nicotinamide adenine dinucleotide, and diminished the typical absorption of BNADH at around 340 nm. A singlet oxygen quencher, sodium azide, partially inhibited photosensitized BNADH oxidation. This BNADH oxidation photosensitized by P(V)porphyrins in the presence of sodium azide can be explained by electron transfer oxidation from BNADH to the photoexcited P(V)porphyrins.

View Article and Find Full Text PDF

An axial-connecting trimer of the porphyrin phosphorus(V) complex was synthesized to evaluate the relaxation process of the photoexcited state and the photosensitizer activity. The photoexcitation energy was localized on the central unit of the phosphorus(V)porphyrin trimer. The photoexcited state of the central unit was relaxed through a process similar to that of the monomer phosphorus(V)porphyrin.

View Article and Find Full Text PDF

DiethyleneglycoxyP(V)tetrakis(p-n-butoxyphenyl)porphyrin (EGP(V)TBPP) forms a self-aggregation in an aqueous solution, and the photoexcited state of this molecule was effectively deactivated. Association with human serum albumin (HSA), a water-soluble protein, causes dissociation of the self-aggregation, resulting in recovery of the photosensitizer activity of EGP(V)TBPP. Under visible light irradiation, EGP(V)TBPP photosensitized HSA oxidation.

View Article and Find Full Text PDF

Phenothiazine dyes, methylene blue, new methylene blue, azure A, and azure B, photosensitized the oxidation of nicotinamide adenine dinucleotide (NADH), an important coenzyme in the living cells, through electron transfer. The reduced forms of these phenothiazine dyes, which were produced through electron extraction from NADH, underwent reoxidation to the original cationic forms, leading to the construction of a photoredox cycle. This reoxidation process was the rate-determining step in the photoredox cycle.

View Article and Find Full Text PDF

To investigate RNA degradation in live cells, detection methods that do not require RNA extraction from cells are necessary. In this study, we examined the utility of fluorescence lifetime measurements using a probe attached to the end of an RNA molecule for detecting RNA degradation. We optimized a short fluorescein-labeled RNA sequence whose fluorescence lifetime varied significantly before and after degradation.

View Article and Find Full Text PDF

To control the activity of photodynamic agents by pH, an electron donor-connecting cationic porphyrin, -(,-dimethyl-4-aminophenyl)-tris(-methyl--pyridinio)porphyrin (DMATMPyP), was designed and synthesized. The photoexcited state (singlet excited state) of DMATMPyP was deactivated through intramolecular electron transfer under a neutral condition. The p of the protonated DMATMPyP was 4.

View Article and Find Full Text PDF

DiethoxyP(V)tetrakis(-methoxyphenyl)porphyrin (EtP(V)TMPP) and its fluorinated derivative (FEtP(V)TMPP) were synthesized to examine their photodynamic action. These P(V)porphyrins were aggregated in an aqueous solution, resulting in the suppression of their photodynamic activity. In the presence of human serum albumin (HSA), a water-soluble protein, the aggregation states were resolved and formed a binding complex between P(V)porphyrin and HSA.

View Article and Find Full Text PDF

The binding modes of a pyrene-porphyrin dyad, (1-pyrenyl)-tris(N-methyl-p-pyridino)porphyrin (PyTMpyP), to various DNAs (calf thymus DNA (Ct-DNA), poly[d(G-C)2], and poly[d(A-T)2]) have been investigated using circular dichroism and linear dichroism measurements. Based on the polarization spectroscopic results, it can be shown that the pyrenyl and porphryin planes are skewed to a large extent for PyTMPyP in an aqueous environment and in the binding site of poly[d(G-C)2]. In this complex, a photoinduced electron transfer (PET) process between the pyrenyl and porphyrin moieties occurs.

View Article and Find Full Text PDF

A physical mixture of polymer-protected Ag nanoparticles and Rh, Pd, or Pt nanoparticles spontaneously forms Ag-core bimetallic nanoparticles. The formed nanoparticles were smaller than the parent Ag nanoparticles. In the initial process of this reaction, the surface plasmon absorption of Ag nanoparticles diminished and then almost ceased within one hour.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a less-invasive treatment for cancer through the administration of less-toxic porphyrins and visible-light irradiation. Photosensitized damage of biomacromolecules through singlet oxygen (O) generation induces cancer cell death. However, a large quantity of porphyrin photosensitizer is required, and the treatment effect is restricted under a hypoxic cellular condition.

View Article and Find Full Text PDF

Naphthalene is a carcinogenic polycyclic aromatic hydrocarbon, to which humans are exposed as an air pollutant. Naphthalene is metabolized in humans to reactive intermediates such as 1,2-hydroxynaphthalene (1,2-NQH), 1,4-NQH, 1,2-naphthoquinone (1,2-NQ), and 1,4-NQ. We examined oxidative DNA damage by these naphthalene metabolites using P-labeled DNA fragments from human cancer-relevant genes.

View Article and Find Full Text PDF

The binding modes of a pyrene-porphyrin dyad, (1-pyrenyl)-tris(N-methyl-p-pyridino)porphyrin (PyTMpyP), to DNA and its photophysical properties have been investigated using various spectroscopic techniques. The circular dichroism (CD) spectrum of PyTMpyP bound to DNA (PyTMpyP-DNA) showed one negative and two positive bands in the Soret region. The CD signal in the pyrene absorption region was positive.

View Article and Find Full Text PDF

The activity for photodynamic therapy of water-soluble cationic porphyrins, tetraphenylporphyrin P(V) complexes, was investigated. Bis(cyclohexylmethoxy)P(V)tetraphenylporphyrin (DCHMP(V)TPP), dichloroP(V)tetraphenylporphyrin (ClP(V)TPP), and dimethoxyP(V)tetraphenylporphyrin (DMP(V)TPP) could cause the photosensitized deactivation of tyrosinase. The tryptophan residue of human serum albumin (HSA) and several kinds of amino acids could be damaged by these P(V)porphyrins under visible light irradiation.

View Article and Find Full Text PDF

Water-soluble porphyrins, diethoxyphosphorus(V)tetraphenylporphyrin (EtP(V)TPP) and its fluorinated analogue (FEtP(V)TPP), decreased the typical absorption around 340nm of nicotinamide adenine dinucleotide (NADH) under visible light irradiation, indicating oxidative decomposition. A singlet oxygen quencher, sodium azide, and a triplet quencher, potassium iodide, slightly inhibited photosensitized NADH oxidation. However, these inhibitory effects were very small.

View Article and Find Full Text PDF

In many drug delivery strategies, an inefficient transfer of macromolecules such as proteins and nucleic acids to the cytosol often occurs because of their endosomal entrapment. One of the methods to overcome this problem is photochemical internalization, which is achieved using a photosensitizer and light to facilitate the endosomal escape of the macromolecule. In this study, we examined the molecular mechanism of photochemical internalization of cell penetrating peptide-cargo (macromolecule)-photosensitizer conjugates.

View Article and Find Full Text PDF

Electron donor-connecting cationic porphyrins meso-(1-naphthyl)-tris(N-methyl-p-pyridinio)porphyrin (1-NapTMPyP) and meso-(2-naphthyl)-tris(N-methyl-p-pyridinio)porphyrin (2-NapTMPyP) were designed and synthesized. DFT calculations speculate that the photoexcited states of 1- and 2-NapTMPyPs can be deactivated via intramolecular electron transfer from the naphthyl moiety to the porphyrin moiety. However, the quenching effect through the intramolecular electron transfer is insufficient, possibly due to the orthogonal position of the electron donor and the porphyrin ring and the relatively small driving force: Gibbs energies are 0.

View Article and Find Full Text PDF

The mechanism of photosensitized protein damage byphosphorus(V) tetraphenylporphyrin derivatives (P(V)TPPs) wasquantitatively clarified. P(V)TPPs bound to human serum albumin(HSA), a water-soluble protein, and damaged its tryptophan residueduring photoirradiation. P(V)TPPs photosensitized singlet oxygen ((1)O(2))generation, and the contribution of (1)O(2) to HSA damage was confirmedby the inhibitory effect of sodium azide, a (1)O(2) quencher.

View Article and Find Full Text PDF

Endogenous and exogenous photosensitizers induce DNA damage, leading to carcinogenesis. Further, DNA is an important target biomacromolecule of photodynamic therapy (PDT) for cancer. Since the solar-induced DNA damage and PDT reaction occur in a complex biological environment, the interaction between biomolecule and photosensitizer is important.

View Article and Find Full Text PDF

The mechanism of DNA damage photosensitized by Nile blue (NB) was studied using (32)P-5'-end-labeled DNA fragments. NB bound to the DNA strand was possibly intercalated through an electrostatic interaction. Photoirradiated NB caused DNA cleavage at guanine residues when the DNA fragments were treated with piperidine.

View Article and Find Full Text PDF

To control the activity of singlet oxygen ((1)O2) generation by photosensitizer through interaction with DNA, the electron- donor-connecting water-soluble porphyrin, meso-(9-anthryl)tris(N-methyl-p-pyridinio)porphyrin (AnTMPyP), was designed and synthesized. Molecular orbital calculation speculated that the photoexcited state of AnTMPyP can be deactivated via intramolecular electron transfer from the anthracene moiety to the porphyrin moiety, forming a charge-transfer (CT) state. The electrostatic interaction between the cationic porphyrin and anionic DNA predicts a rise in the CT state energy, leading to the inhibition of the electron transfer quenching.

View Article and Find Full Text PDF

For the purpose of the basic study of photodynamic therapy, the activity of the water-soluble P(V)porphyrin, dimethoxyP(V)tetraphenylporphyrin chloride (DMP(V)TPP), on photosensitized protein damage was examined. The quantum yield of singlet oxygen generation by DMP(V)TPP (0.64) was comparable with that of typical porphyrin photosensitizers.

View Article and Find Full Text PDF

An electron donor-connecting water-soluble porphyrin, meso-(1-pyrenyl)-tris(N-methyl-p-pyridinio)porphyrin, did not demonstrate singlet oxygen generating activity under photo-irradiation. The interaction with DNA successfully recovered the photosensitized singlet oxygen generation by this porphyrin.

View Article and Find Full Text PDF

The dynamics of photosensitized singlet oxygen generation in a DNA microenvironment were examined using the DNA-binding photosensitizers berberine and palmatine. These photosensitizers generate singlet oxygen only under interaction with DNA because the singlet excited state deactivates rapidly in a nonbinding environment. A kinetic study demonstrated the reaction process whereby singlet oxygen is generated through energy transfer from the triplet excited state of DNA-binding berberine (or palmatine) to molecular oxygen.

View Article and Find Full Text PDF

To control the activity of photosensitized singlet oxygen ((1)O(2)) generation, the electron donor-connecting porphyrin, 5-(9'-anthryl)-10,15,20-tris(p-pyridyl)porphyrin (AnTPyP), was designed and synthesized. AnTPyP became water-soluble by the protonation of the pyridyl moieties in the presence of 5 mM trifluoroacetic acid (pH 2.3).

View Article and Find Full Text PDF